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ABSTRACT

A simple numerical model using a modified Euler's method was developed to

model nonlinear lattices. This model was used to study the properties of four

breather and kink type solitons in the cutoff modes of a lattice of linearly coupled

oscillators with a cubic nonlinearity. These cutoff mode solitons were shown to

correspond very well to the theoretical predictions of Larraza and Putterman [1984]

and the experimental work of Denardo [19901. In addition, a fifth soliton was

discovered in the upper cutoff mode, which was not anticipated by the theory. A

preliminary analytical attempt to describe this soliton and to describe solitons in the

intermediate modes, due to Larraza, Putterman, and the author, is presented.

Additional numerical work on intermediate mode solitons and domain walls was

performed. These studies showed that kink solitons are ubiquitous, and that they

appear to be intimately linked to domain wall structures. In order to demonstrate

the flexibility of the computer program developed, the model was extended to

include two dimensional lattices and one dimensional lattices with nonuniform

characteristics. Two dimensional breather and kink solitons are described. Finally,

a Toda lattice was modeled and some preliminary results obtained in prep ration for

future work.
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I. INTRODUCTION

Recent years have seen a great shift in emphasis in physics research as the total

dominance of quantum mechanical studies has yielded somewhat to the rapidly

growing group of disciplines commonly grouped under the "nonlinear physics" title.

What is meant is more specific -- the study of classical, nonlinear, dynamical systems.

Within this group of disciplines is the field of soliton research, which boomed during

the last three decades. This work has yielded practical results in several areas, most

notably in the development of fifth generation fiber optic communications systems

which will transmit soliton pulses, greatly increasing the permissible time-bandwidth

product of a given system (Hasegawa and Tappert [1973]). Solitons, which are

spatially localized nonlinear wave packets so named because they have many

particle-like properties, have became a key part of the current state of the art in

cosmology, particle physics, condensed matter physics, and hydrodynamics, to name

but a few.

Most of the soliton work performed to date has focused on continuous systems,

such as fluids. Of the little work done on discrete solitons, much has been

concentrated in the study of cellular automata. Recently, though, a group of

researchers at UCLA has been conducting research into the characteristics of solitons

in discrete lattices. Experimental work has been done by Denardo [1990] on a

simple realization of a nonlinear lattice -- a one dimensional lattice of linearly
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coupled pendula. He verified the existence of two of four predicted soliton types

in the cutoff modes of the lattice (the cutoff modes are those modes where all of the

elements are either in or out of phase with both of their nearest neighbors).

Additionally, he studied the behavior of these solitons as he varied the frequency

and amplitude of the parametric drive system he used to overcome the effects of

damping.

The purpose of the research presented here was initially to provide numerical

verification of Denardo's experimental results, in order to check the degree to .,nich

his results actually corresponded to theoretical predictions. It should be noted that

his results were largely qualitative, since the coupling and damping parameters of the

lattice he used could not be measured directly. A simple computer model of the

pendulum lattice was developed, tested, and then used to quickly and accurately

verify the results of Denardo. In fact, the solitons in the pendulum lattice were

found to be in excellent agreement with the theoretical predictions, which were

based on a weakly nonlinear approximation. This agreement persisted even outside

the limits of the approximations used in developing the theory, suggesting that these

soliton structures are very robust.

The linear lattice theory basics required for this work are presented in Chapter

II, along with a discussion of the theory of parametric drive and its effect on the

stability of lattice dynamics. Chapter II presents the theoretical development upon

which Denardo's work was based. Further, the results of a study of the stability of

various conditions of the cutoff modes is presented. This study was performed in

2



order to determine the effect that discreteness had on the validity of the well known

stability theory of Benjamin and Feir [19661 which was developed for continuous

systems. Finally, the numerical results which validated Denardo's experimental work

are presented. The existence of the third (which was seen experimentally by Larraza

et al. [1990] ui a water channel experiment), and fourth predicted solitons, and of

one previously unsuspected soliton were also shown.

Having quickly achieved the initial goal of validating Denardo's work, we went

on to study modes intermediate in frequency and wavelength between the two cutoff

modes. These results, along with a brief sketch of a theoretical description which

is still being developed, are presented in Chapter IV. Many different types of

soliton-like structures were identified and their propertie3 studied in this phase of

our work, leading us to conclude that, in particular, kink solitons (described in

Chapter [I) appeare to be ubiquitous, existing in every mode we checked. Moving

beyond simple soliton-like structures, the existence of domain walls was shown for

many different combinations of modes (these domain walls are essentially localized

boundaries between two different stable modes).

Finally, in order to extend the results obtained in the various lattice modes,

work is presented in Chapter V on the effects of nonuniformities in the lattice on

the stability and motion of the many different solitons and soliton-like structures.

Preliminary results from the study of a two-dimensional model of the same type of

lattice, and from the study of a one dimensional model of the Toda lattice are also

presented in Chapter V. The Toda lattice is a lattice in which the coupling between

3



nearest neighbors is exponential, instead of linear. It has been much studied in the

two decades since it was first formulated because it has many attractive

mathematical properties (not the least of which is that it is completely integrable).

By the time the work presented here was complete, the initial objective had

been broadened to include not only a study of nonlinear dynamics, but also a

demonstration of the value of highly interactive computer modeling of real physical

systems. The numerical method used, which was quite simple, is presented in

Appendix A; a short manual on using the program and the actual code are presented

in Appendices B and C. This program, in its final form, was designed to provide a

fast, accurate model of physical systems which are composed of oscillating elements

(such as lattices), which was highly interactive and easily modified. The fact that the

program is highly interactive makes it possible for the researcher to go far beyond

the traditional method of numerical analysis wherein a set of parameters is put into

the model and the output is then examined. An analogy can be drawn between the

traditional numerical analysis methods, which act essentially as filters that alter the

input in a definite way. The model used in this thesis is analogous to the newer

adaptive filters, which respond to the dynamics of the system in a way that increases

the utility of the effort. The adaptive features are provided by the user via keyboard

commands which are entered as the model is running and which take immediate

effect.

The contribution which it is hoped this thesis will make is, therefore, twofold.

First, many interesting new results were obtained pertaining to solitons in nonlinear

4



lattices. These results have served as a launching point for several interesting

theoretical developments achieved in our group and at UCLA, and as a means of

both verifying and directing the work of the experimentalists (whether verification

or direction occurred depended on who got there first). Second, a simple computer

model was developed which is highly interactive, somewhat novel in the level of

freedom it gives the researcher, and easily modified to model other physical systems.

This program is already being used by several additional students, each of whom is

making his or her own minor modifications. It is hoped that the program will in the

end have served as a nucleation site for continuing innovation in interactive physics

modeling.

5



II. PRELIMINARY: THE LINEAR LATTICE

A. THE SIMPLE MASS-SPRING LATIICE PROBLEM.

As a starting point in the study of solitons in nonlinear lattices, we consider

first the behavior of linearized lattices in this chapter, starting with a simple lattice

of point masses connected by massless springs. Except in Chapter V, this and all

other lattices will be taken to consist of identical masses and stiffnesses. Also,

throughout this thesis periodic boundary conditions are used, such that the last

element is coupled both to the next to last element and to the first element; this is

essentially a finite ring lattice, except that all effects of curvature of such a ring

lattice are ignored. If we restrict our analysis to longitudinal motion, the exact

equation of motion for the nth element is

9.--!(x,,., +X, _-2x,,), ILA.1

with s and m being the stiffness of the springs and mass of the point masses,

respectively, and with x being the deviation from equilibrium for each element.

Letting

6



(A) ' II.A.2

we get

S2

x,-~o(x,. l+ Xn-1 2x.,)awO" II.A.3

We assume an oscillatory solution of the form

xn.Ae), II.A.4

where na is the spatial variable, and a is the spacing of lattice elements. Substitution

of this solution into (ll.A.3) and solving for frequency yields

2co s-2 A)2 [.A.5

which is the dispersion relationship for this linear lattice. For a finite and discrete

lattice, k is quantized. Thus, as seen in Figure II.1, the dispersion relation does not

give a continuous curve such as the one described by II.A.5.

It is often useful to work with continuum limit approximations of discrete

systems, so we will derive here the continuum approximation of the linear ring

lattice. If we let y = na be the spatial variable, and we take the limit of (l.A.3) as

7



CI)
CU)

...O ... ................ ... .................. ......... ....... ......

C\J 4

.. . .. ..... ..... ....

CU)

V.: V- '- 0- 0 0 06

oBewo Aouenbij ieeun

Figure 11.1. Dispersion relation for a finite ring mass-spring lattice.
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the spacing of the lattice goes to zero (and the mass and stiffness go to zero and

infinity, respectively), we get

+rn - 2xlima(X,+l +x -1- 2x. ) o , II.A.6

a-O a 2  ay2

Thus one can express the equation of motion of the linear ring lattice in the

continuum limit by a simple wave equation:

a~x 3  1 a x, O
2X I O -0II.A.7

2 & 2

where

c-a{. II.A.8

Finally, it is worthwhile working backwards for a moment to obtain a result

that is interesting now and useful later. If we start by letting y be a continuous

rather than a discrete variable, and consider the value of x(y) at two points spaced

a small distance a to the left and right of a particular point y0, we can express them

as Taylor series expansions:

9



x(yo-a)-x(yo) -ll. - +...,A.O

and a(oa-~o- x a2fd2x) ~al
x~0+)-~y) +., ) .... . 1

Now, adding these together and subtracting twice x(y0) gives us an expression

identical to the right hand side of (H.A.1), with the exception of the multiplicative

constant s, if we ignore the higher order even derivatives. What does this mean

physically? If we start with a continuous system and discretize it as indicated, we get

the same equation of motion as our discrete lattice, if we assume only nearest

neighbors ineract. Assuming infinite interaction length, for example, means that to

use (I.A.1) to approximate a continuous system entails an error of order 4 in the

step size a and in derivatives of x; for harmonic systems, the error is of order (ka)4,

which is small when the second derivative is finite. However, when the second

derivative vanishes, these errors can be significant.

B. THE PENDULUM LATIICE AND ITS GENERALIZATION.

One of the simplest experimental realizations of a nonlinear lattice is a lattice

of coupled pendula. Such a lattice was used by Denardo [1990] to study solitons in

discrete lattices. An idealization of the lattice he used is shown in Figure 11.2. In

the actual lattice, coupling was accomplished by tying knots between the V shaped

10
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Figure 11.2. Idealized pendulum lattice, from Denardo [19901.
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strings which supported adjacent elements, and was assumed to be approximately

linear. For our purposes, we will assume a completely linear torsional spring

coupling, for ease of analysis. Each pendulum bob is now acted on by two forces -

gravity and the coupling force from each nearest neighbor. The exact equation of

motion is given by

t2  1 2 (0+ + 0 _-20.)+ cisn0.-O, .B.1

with

WO 9- II.B.2

This equation can be rewritten with a coupling constant r replacing the coefficient

of the second term and the sine term expressed as an infinite series:

2 2
0.. ,) 2 o0 , o .B.3

&2 6 5!

which can then be generalized, with higher order nonlinearities dropped, to

12



, _y(0,+l +6 -_120,)+wo2 a. 3. II.B.4

In this equation, the sign of a is left unspecified; in Chapter III, it will be seen to be

of critical importance, whereas the magnitude is not. Throughout this thesis, we will

take a to be either ± 1 or 0, as desired.

In order to derive the dispersion relation for (H.B.4), we set a equal to zero,

since the dispersion relation is a linear concept. As before, we assume a solution of

the form of (11.A.4), and substitute into (II.B.4). Solving for frequency yields

02 .ka
0 

2

This dispersion relation is plotted in Figure 1.3. Again, the dispersion relation is a

discrete function of k, since we are dealing with a finite discrete lattice. As we add

elements to the lattice, the density of points on the curve becomes greater and

greater, until the curve is continuous. This corresponds to an infinite lattice.

Denardo [1990] studied solitons in the two extreme modes represented in

Figure 11.3, referred to as the upper and lower cutoff modes. The lower cutoff mode

corresponds to k =0, or to an infinite wavelength, and is the mode where all lattice

elements oscillate exactly in phase, so that coupling is completely inoperative. The

frequency of this mode is, as indicated by H.B.5, exactly that of a single linear

oscillator. The upper cutoff mode corresponds to k = ar/a, or wavelength equal to

13
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two lattice spacings. In this mode, adjacent elements are exactly out of phase with

each other. Coupling is maximally effective in this mode, and the frequency is given

by

2 2 o4Y II.B.6

Taking the continuum limit of the equation of motion exactly as before, we get

-- y- +sinO-O. H.B.7
&2  a2

Keeping only the leading order nonlinearity and generalizing, we get the nonlinear

Klein-Gordon equation

0 2  ~2 3--- (Io aey ".

This is the continuum equation which corresponds to the discrete equation modeled

in this thesis. As with the mass spring lattice, the model can be viewed as a finite

element approximation of (II.B.7) with only nearest neighbor interactions allowed,

or an approximation of (II.B.6) which is accurate, where the second spatial derivative

does not vanish, to fourth order in ka.
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C. THE DRIVEN DAMPED LATICE.

The experimental work which preceded this thesis was done using a damped

driven pendulum lattice, and indeed the use of drive and dissipation proved useful

in the numerical modeling of nonlinear lattices as well. The reason for the need for

drive in the experimental lattice is that dissipation is unavoidable, so if any steady

state was to be studied, drive was necessary. In the case of the work presented here,

the primary utility of drive and dissipation arises from the fact that energy radiated

away from solitons as they reach a steady state profile is damped and does not

return after traversing the ring lattice. When the free case is studied, it is often

difficult to recognize the presence or confirm the absence of solitons in the presence

of high background radiated energy.

In the numerical model, drive and dissipation were incorporated into the

equation of motion by incorporating a linear damping term, with damping constant

B, and a modification to the last term by the inclusion of a term representing drive

of amplitude 21j and frequency 2(a:

X • 2 3
&--- y(..I+x,1 _-2x,)+ -,+[c o+2TIcos(2Jt)]x.-ax.. II.C.1

This is the equation for a system with acceleration drive, as opposed to a system with

displacement drive, where we would have an additional factor of W2 multiplying the

cosine in the drive term. Equation (IIC.1), with the coupling term and the cubic

16



nonlinearity neglected, is a form of Mathieu's Equation, the analysis of which is well

established (see, for example, Pippard [19791, pp. 289-301, or Appendix I of Denardo

[1990]).

17



III. THE NONLINEAR LATTICE I: CUTOFF MODE SOLITONS

A. BRIEF OVERVIEW OF SOLITON THEORY.

Solitons are "localized regions of motion with finite energy that can appear in

media that support waves" (Denardo [1990]). They can be viewed either as finite

extent nonlinear waves or as "particles" (hence their name, which was coined by

Zabusky and Kruskal [1965]). Solitons have several interesting properties. They

exist because of the competition between dispersive and nonlinear effects.

Dispersive effects tend to "spread out" the wave, shedding energy via linear radiation

of energy at various frequencies. Nonlinear effects tend to concentrate the energy.

When the medium in question obtains a profile that matches a soliton solution to its

underlying differential equations of motion, these effects are exactly balanced, and

energy is trapped in a soliton. Solitons can either be propagating or stationary;

whereas most of the theoretical and numerical work done until recently has

concerned itself almost exclusively with propagating solitons, the work here is

focused almost exclusively on the stationary, or standing, solitons first discerned

experimentally by Wu eLal. [19841 and explained theoretically by Larraza and

Putterman [1984]. Another important aspect of solitons is that they collide elastically

and are frequently very long-lived. These two facts, and the very great localization

of energy within a potential field that solitons represent, have made them the subject

18



of much interest in fields as widely separated as molecular biology and particle

physics.

Several well established nonlinear equations of motion have been shown to

have soliton solutions (Ablowitz and Segur [1981]). Of these, we are concerned here

with only two. The first of these is the Nonlinear Schrodinger (NLS) Equation:
.aA 0qa -

j-y- -vAPA-0, IlI.A.1

where, for a surface wave of wavenumber k on a deep liquid, the parameters are

1 d 2W XIA.2
2 ak2

v -2wk 2  mI.A.3

and

_x_ d- t. III.A.4
dk

A well-established soliton solution to the NLS equation is

A- secbf -( 42-. III.A.5

where the velocity v is a free parameter, and where

19



b--LIII.A.6

2y ( Ak2).

An important feature of this solution is that the amplitude of the envelope divided

by the characteristic length of the soliton is a constant, with value

K- . III.YMA.7

This property proves very useful in discriminating actual soliton solutions and

solutions which look superficially like the hyperbolic secant soliton but do not obey

this rule.

The other standard nonlinear evolution equation with soliton solutions that is

relevant here is the sine-Gordon equation,

--- -2O 020.+ n 0 I.A.10
-- 0
&t2  O-X2

which is derived from the equation of motion of the pendulum lattice and in many

other physical applications (Dodd et al. [1982]). A static kink solution to equation

(IIIA.8) is

20



(tel I.A.11
0(x)-4tan-( e c.

This solution constitutes a transition between two domains separated by 360 degrees,

similar to the separatrix motion of a single pendulum. Solutions to the nonlinear

evolution equations (III.A.1 and Ill.A.8) have been shown to strictly meet the

accepted standards of what a soliton is. That is, they collide elastically and have

finite spatial extent. As the exact equations of motion of the generalized nonlinear

lattice are explored in subsequent sections, it will become clear that these are only

approximate solutions to the real lattice. No attempt has been made in this thesis

to examine the elasticity of collisions between two or more solitons, so the term is

used somewhat more loosely here than in the literature. The width-amplitude ratio

test has been used, however, to limit the study to solutions at least very closely

resembling solitons. In fact, it is a general observation that, in any real systems,

which therefore have some dissipative effects, however small, none of the exact

soliton solutions that have been discussed in the literature to date actually remain.

All of those studies have been in free systems, since a dissipative term in the

nonlinear evolution equations invariably separates the equation form the standard

forms which have exact soliton solutions.

21



B. NLS THEORY OF THE CUTOFF MODE LATTICE.

We consider in this thesis the generalized equation resulting from a linearly

coupled lattice of nonlinear oscillators. The original system in question was the

model pendulum lattice whose exact equation of motion is

0,,-' (0 ,8 1 +0,- 1-20 n) - .. sin0,,, 11.B.21

where

2"g HI.B.2
L

and

Ta 2y - 9 III.B.3
L2

and T is the torsional constant of the springs connecting adjacent elements, a is the

lattice spacing (which we henceforth take to be unity, and drop from the equation),

m is the mass of the pendulums bobs, and L is the length of each pendulum. This

equation is usually linearized as

0 -y( 0 .+0n_-20 n)- w0.. III.B.4

However, in the weakly nonlinear regime, the second term in the Taylor expansion

of the sine function is included:
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2
2 00 3 IlI.B.5S-Y(e,+, +e,- -20 )+  0 6-- (-0 n.

Generalizing this equation as was done in Chapter IL and adding drive and

dissipation, we get the equation used in the computer model used in this thesis (for

description of numerical methods used, see Appendix A):

6,-y(0,.j +0,._1_2e,)- P0 ,(( o+2Tcos(2(at)0 R+ a0,. III.B.6

Analytically, this equation is difficult to deal with. We consider first, therefore,

only the two cutoff modes (see Chapter II), with linear frequencies WO and Wo,

respectively, where it is possible to make suitable approximations and arrive at an

analytically tractable expression (in fact, the NLS equation). We consider the

uniform lower cutoff state to be modulated by an envelope that is slowly varying in

both space and time. That is,

0(x,t)-A(x,t)eJ°'+B(x,t)el t+...+c.c.,  IIHI.B.7

where

94K III.B.8

and the lack of even harmonics is due to the cubic nonlinearity. Substituting this

solution into the cubic Klein-Gordon (III.B.6), dropping all higher harmonics, and

neglecting A, compared to A, because A(xt) is slowly varying, we get
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2 - y A'O-A + ( wJ 2 _ jc.) j )A+r -3aLAFA, III.B.9~ax 2

for the lower cutoff mode and

2jw- a +Y -P+(W 2_W 2+j(0P)A+-ii-3aAPA, MB1
& &x2

for the upper cutoff mode, recalling that

2- 24 IH.B.11

Thus both the upper and lower cutoff modes can be represented by the nonlinear

Schrodinger equation, in the continuum limit, and at the weakly nonlinear level. The

next theoretical task is to examine the stability of the uniform states of these modes;

following that, the soliton solutions of the NLS equation will be examined in detail,

including their stability characteristics.

C. STABILITY OF THE CUTOFF MODES.

Following the method of Stuart and Diprima [1978] as extended by Denardo

1990], we use an amplitude equation to study the stability of the uniform cutoff

modes of our generalized lattice. Stewart and Diprima showed that this method is

equivalent to the somewhat more complicated perturbative methods used by

Benjamin and r ir [1967] and Eckhaus [1965]. The basic idea is to consider a small

perturbation in the sidebands of the uniform mode and to determine whether the
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mode is stable when so perturbed. The essential result of Benjamin and Feir, and

of Eckhaus in a slightly different but conceptually equivalent problem, was that, for

certain wavelength regimes, resonances between the sidebands and the mode caused

energy to be shed by the mode to the sidebands, which grow exponentially.

Eckhaus and Benjamin and Feir were concerned with fluid phenomena when

they conducted their work. In fact, their results were developed entirely in the realm

of continuum mechanics. However, they can be used profitably with continuum limit

approximations of discrete lattices, such as the Nonlinear Schrodinger Equation.

However, the effects of finite lattice size on the theoretical thresholds of instability

have not been studied heretofore. Later in this section we will consider the case of

a two element oscillator lattice under the equations of motion given above. It will

be shown that one can solve approximately for the threshold of instability in this

limiting case, and that the result is in fact different from that predicted by the

continuum theory (which is not really surprising; rather, it would have been

surprising if the results had been identical). Finally, numerical results for lattices

from two to 40 elements in size will give a very clear relationship between the

continuum theory and the actual finite lattice results. There currently exists no

theoretical framework in which to place these results, other than to compare them

with the two element lattice theory (with which the agreement is remarkable).

1. Free Lattice Stability.

We consider the NLS equation for the lower cutoff mode of the free

lattice:
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2 aA 2 A 2 )2A3aLA. II.C.1

The uniform steady state is A = A0, a positive real constant, with the relationship

between amplitude and frequency being

A; -(W-O IIH.C.2

3az

To investigate the stability of the motion, we set

A-Ao(1 +Y), III.C.3

where

f - T(x,t) IM.C.4

and

[t I. III.C.5

Substituting this into the NLS equation, neglecting higher order terms in V, and using

(II.C.3) to eliminate zero order terms, we get the evolution equation (Denardo

[1990])
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2j2Y III.C.6

Imposing a small modulation of wavenumber k, and including both left and right

traveling waves, we set

l-aej~k--)+beJ(-kx+Q') ,  III.C.7

with a, b, and Q complex constants. Grouping terms from (Ill.C.26) according to

the type of exponential factor, and setting the coefficient of each to zero, we get

2wQ+c2k2-3aA2 -3aA2 ial 0I.C.8

2 I+20 2-3aA -2 +c2k2-3 aA bj "

Setting the determinant of (II.C.28) to zero and solving for Q (Denardo [1990])

gives

__Ck21 _aA IllI.C.92No c--k2 I "

Thus, for Q to be real and the modulation to be stable, we require
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6A2<c2k2. III.C.10

Thus, for the lower cutoff mode, if a> 0 (softening lattice), the motion will be

unstable at a given amplitude to a sufficiently long modulation wavelength. Since

the wavelength is limited by lattice size for finite lattices, it is clear that for finite

softening lattices there exist amplitude thresholds below which the lower cutoff mode

is stable under modulation. For hardening lattices, an identical procedure starting

from (III.B.10) yields

6a 'A > 2.  HII.C.11

Thus, for a hardening lattice, the free uniform state will be unstable for a given

amplitude for modulation wavelengths beyond some threshold, exactly analogously

to the softening lower cutoff mode. Also, the softening upper cutoff mode is always

stable to sideband modulations. This result is in fact the first of many which show

the marked symmetry properties of the cutoff modes.

2. Stability of the Uniform Damped, Driven Cutoff Lattice.

Starting from (IIl.B.9), and following the method again of Denardo [1990],

we consider first the effects of parametric excitation on the nonlinear cutoff modes,

then the stability of the damped driven lattice to sideband modulation. Noting that

(11.B.9) is equivalent to (H.C.4), with the addition only of the cubic nonlinearity

term, it is clear that the analysis of excitation from rest is unchanged from that
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performed in Chapter I, since, at and just above the state of rest, the additional

nonlinear term plays no role. However, as mentioned in that analysis, the

nonlinearity does, above some amplitude, begin to play a role that counteracts the

exponential growth of oscillation due to the parametric excitation. Therefore, where

the linear case grows without bound once the excitation from rest threshold is

reached, the nonlinear lattice does not.

Consider the stability of these Iamped driven lattice states when

modulated by sidebands. We start as before with

2j" A _2 a2A +(I 2 2 ^

t & i-3HLdk II.C.12

To investigate continuum stability for a modulation of wavenumber k, we let

A-Aoe 18 (1+T(xt)), III.C.13

where

2_ 1a 2 22-1p ). I.C.14

As before, we retain only those terms linear in T, which gives us (Denardo [1990])
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_ h - fY + gi ,  III.C.15
O&2

with

h-C 2  III.C.16
2j,

f.9 [2o 2 - 2- ± Cc], m.c.,1

and

WO Wll.C.182j' t

Letting

T-ae '  Pt)+be - K = P'),  III.C. 19

we get the coefficient matrix equation

hk 2-P IA.0. ml.C.20

We thus find that the motion is stable if

and
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e(f- hk2):5O, III C.21

Y, hk 2 k~, HI.C.22

which, when the values for f and h are substituted in, yields

( 3a4 2L 2 2( 3 0 2_ 2 C2k2) _(WOo_ O 2]>.III.C.23

This result, from Denardo [1990], can be expressed graphically for an acceleration

drive- ystem, as shown in Figure 111.1. To use Figure 111.1, select any point on the

tuning curve. Decrease the ordinate by ck 2/2. If the resultant point lies in a cross-

hatched region, then the state is unstable to a modulation of wavenumber k.

Similarly, Figure 111.2 shows the stability region for the upper cutoff mode, which is

essentially the same as the lower cutoff mode, with w replacing wo.

3. Effects of Finite Lattice Size on Stability.

The results presented in sections 1 and 2 were based entirely or a

continuum theory based on the work of Benjamin and Feir [1967]. However, in

experimental and numerical work, finite lattice sizes are a necessity, even when

periodic boundary conditions are used, as they were in all of the work presented

here. Theoretically, although it is clear that finite lattice size leads to a discretization

of possible modulation wavenumbers, the effects of finite lattice size on stability

remain incompletely understood. In an effort to remedy this situation, we consider
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Fig. 11.1. Stability of the parametrically driven steady state, from Denardo [1990].
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Fig. MI1.. Stability of the driven upper cutoff mode.
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the case of a two element lattice, which can be solved more directly (although still

only approximately) using the equations of motion. This analysis will be performed

and the results compared directly to those of the previous Benjamin-Feir analysis.

Then numerical work on the subject will be presented, which connects in a

continuous fashion the results of the Benjamin-Feir analysis and our straightforward

N = 2 analysis.

a. Two Oscillator Lattice Stability.

For the two oscillator lattice, the exact equations of motion are

0+ )o0 d--t- -( -2) III.C .24

2 +O '02 -a2"-y(O 1 - 2 ). HI.C.25

Transforming to normal coordinates according to the transformation

t-2(01 +2) III.C.26

C-2I(01-02), III.C.27

we get, after substitution into the equations of motion,

and
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+W 2o &--a(0 3 +6 3)-0, HI.C.28
0 2 1 2

+((02+2y)c--m(01-02)-0. II.C.29

Some manipulation shows that

3_ 2&&2 + C2)II.C.30
81*02 2C(C2e+3cZ2

This then yields, for equations of motion in normal coordinates,

- 2 C2&I.C.31

and

+((02 +2 y )C- a C3 +3 VC.  III.C.32

An examination of the form of these equation shows that each of the

modes, which can be considered as oscillators, is parametrically driving the other.

We need to determine the amplitude threshold for excitation next. Consider, for

weakly nonlinear motion, the initial state

-Acoscat+(higher harmonis), III.C.33
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-0, III.C.34

where

2 2 +2y aA2 III.C.35
0+ 4

For a single parametrically driven oscillator,

6+(0 2+2,icos2wt)O-0, III.C.36

the amplitude threshold is given approximately by

n >j2_(Oj' III.C.37

This is only valid if the two frequencies are very similar, and is often expressed as

n>2QIQ-aL HI.C.38

We neglect the cubic term in (II.C.31) because the amplitude is small initially. The

other nonlinear term is
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3xA 2c os2jtt -3A 2(1 +=2)E. III.C.39

There is, in addition to the driving force, a restoring or antirestoring force which

alters the frequency of the driven oscillator. The new frequency is given by

02_2- 3 A 2 . III.C.40
2

The amplitude of the parametric drive is given by

2q -1 1a 2. MI.C.41
2

Excitation occurs if

3 JJ42 (2 3 a2 ) 2 +2y -iaA2. Ill.C.42

The alteration of the frequency of the driven oscillator is very important since it is

a greater change than the nonlinear bending of the frequency of the driver oscillator:
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3lakl> y+3aA. IH.C.43

This relation is not satisfied if a > 0 (softening case), so the softening upper cutoff

lattice is stable (as expected from previous considerations). For a < 0, it follows

from (IU.C.42) that the threshold condition is

_3aw2>y. II.C.44
4

Therefore we can define the critical amplitude to be

4ym.c.45

A similar analysis shows that, for the lower cutoff mode, the motion is unstable for

amplitudes greater than A. Before we can compare this critical amplitude, which

applies only for the N =2 case, to the Benjamin-Feir critical amplitude (obtained

from III.C.10),
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4w y III.C.46
N 6'

we need to express it in terms of the original coordinates (Equation (llI.C.45) is for

the normal coordinate system):

A, 2 . _2y M.C.47

For a coupling parameter of 0.25, the values are 1.28255 and 0.816497, respectively.

It is clear that the difference is significant between the continuum theory prediction

and the discrete theory; any attempt to explain theoretically the deviation from

continuum theory in the finite lattice limit must account for this difference.

b. Numerical Study of Finite Lattice Effects.

A simple lattice model, described in Appendix A, was used to explore

the behavior of the stability threshold for finite lattices in order to explore more

deeply the relationship between Benjamin-Feir continuum theory and the exact

theory just presented. In each case, a lattice of amplitude A was modulated by a

small (about 10% peak to peak of A) modulation of wavelength equal to lattice

length. The long term behavior of the system was then monitored. If the initial

amplitude A was above the actual stability threshold, then the clean, single spatial

frequency modulation grew and became complex spectrally. Otherwise, the system

39



remained stable for long (at least 100 cycles). Various amplitudes were used, with

increasingly fine resolution, until a good estimate of A was available. All values

shown in graphs are accurate to within less than one percent.

First we consider the N =2 lattice as a special, limiting case of the

finite lattices. Figure III.3 shows the theoretical curves of A, as a function of

coupling, along with the results obtained for a hardening lattice with numerical data

obtained using the model. It is clear from the numerical results that the approximate

theory is correct, which was expected. Extension of the exact two element theory

to larger lattices has not yet been attempted, but a numerical determination of the

onset of instability as a function of lattice size was conducted. The results are given

in Figure A.4. The continuum theory clearly determines the threshold for lattices

larger than 20 elements; for smaller lattices, a mechanism probably related to the

one studied in the two element case causes instability to occur sooner.

While verifying this theory and showing the extent of deviation from

continuum theory that the smallest possible finite lattice exhibits, an interesting and

unexpected additional result was obtained. Before describing it, it is important to

point out that the instability predicted by the exact theory in the last section was due

to a different mechanism than the Benjamin-Feir instability. Instead of sideband

modulational instability, the exact theory merely applied well established (and

previously discussed) parametric excitation stability theory to the case where one

element is considered to be parametrically driven by the second element. In fact,

one might have been tempted to presuppose that the results obtained using the
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parametric drive theory would be invalid, since, as the driven element's amplitude

grows, it begins to be stabilized by its nonlinearity. Additionally, at some point one

would guess that, in a phenomenon similar in appearance to the well understood

linear energy beating phenomenon, the driven element becomes the driving element.

In fact, the instability which occurs at the threshold amplitudes

calculated by the exact parametric theory is a weak instability. For amplitudes just

slightly greater than the threshold, the driving element periodically decreases and

then increases in amplitude, while the driven element does the opposite. For

amplitudes in the lower third of the band between the two theoretical thresholds, the

two elements never switch roles. Then, there is a band where the roles switch, but

in a chaotic fashion. That is, the switching takes place at unpredictable intervals.

At slightly greater amplitudes, the switching becomes more periodic, but the detailed

motion of each element becomes more and more chaotic. The boundary between

the domains where switching does and doesn't take place proves to be very difficult

to pin down, as in fact do most of the similar boundaries encountered in this study.

This can be seen, for example, in the time series of Figures 111.5 and 111.6. Each of

these is a series of measurements of the amplitude of the first of two oscillators in

a lattice with coupling of 0.15. In Figure 5, the lattice started with amplitude of

0.8225; in Figure 6, the initial amplitude was 0.84. For reference, the lower

threshold amplitude for this coupling is 0.65, and the upper threshold is 0.99. In

Figure 5, the lattice is just inside the boundary, that is, it is just inside the no

switching domain basin of attraction. The lattice makes a sudden flip across the
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boundary, and then flips back again. This behavior occurred in a free system after

the system had been running for several hundred oscillator cycles. In Figure 6, the

lattice lies initially just outside the boundary, then flips back and forth a couple of

times before settling inside the boundary where it stayed for several thousand

periods of the oscillator. The entire transient took dozens of oscillator cycles, but

only fifteen of the long time cycles of the drive. Based on Figures 5 and 6, one can

conclude that the boundary lies somewhere around 0.83. A more striking example

of a state lying exactly on the boundary is given in Figure 111.7. The element is from

an N =2 lattice with maximum (0.25) coupling and initial amplitude of 1.05, which

is 51% into the inter-threshold band. The extreme irregularity and clear lack of a

preferred state of this free system are typical of highly chaotic systems.

While watching the motion in the time domain gives a vivid example

of chaotic motion, it is in the frequency and phase domains that the best careful look

at the onset of chaos can be had. In order to fully characterize the evolution of the

system's behavior between the tvo theoretical threshold amplitudes, a study of

behavior at various amplitudes was conducted using frequency and phase domain

methods . Figures 11.8 and 111.9 give a sampling of the spectra of one of the

elements at various amplitudes. It is important to ni)te that these are representative

samples only, for the spectra for most amplitudes are continually shifting, especially

in the higher amplitudes where there is frequent role shifting between driver and

driven elements.

44



Figure 111.5. Time series for N =2 element w*:h coupling =0. 15, amp =0.8225.
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Figure 111.6. Time series, N=2 lattice element with coupling = 0.15, amp = 0.84.
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Figure 1.7. Chaotic N=2 lattice element time series with max coupling
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Figure III 7 (cont.)
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Examining the spectra in Figures 111.8 and 111.9, one sees that the

element is monotonic just below the lower threshold (the exact theory threshold).

As one moves to just above the threshold, several small tonals appear very close to

the base frequency, and the signal becomes somewhat more broadband in character.

At 20% into the "inter-threshold band", the side tonals have become more

pronounced, and have moved farther from the home frequency. Note also that they

are mainly on the high side of the main tonal -- for amplitudes in the weakly

unstable band, this is typical of the driven elements. The driving element typically

has sidebands on the low side of the main tonal. At 51% into the band, a great deal

of broadband noise is seen; motion in this regime is chaotic. The number of

sidebands is also much greater. Notice, in the first example (peak amplitude 652)

that most of the tonals are on the low side, and that the spectrum is somewhat

cleaner than the other. This is indeed a driving element, although the roles switch

in this portion of the band. The second spectrum (peak amplitude 982) is typical of

an element that is beginning to switch. A relatively clean spectrum becomes very

noisy, or chaotic, and then it switches from predominantly low to high tonals, or vice

versa. This corresponds to the kind of chaotic transient seen in Figures 5, 6 and 7

in the time domain, and is in fact for the same conditions as those which gave the

markedly chaotic time series in Figure 111.7.

The next pair of spectra are at 72% into the inter-threshold band.

The first is remarkably clean, and corresponds to a driven element, even though

there is an imbalance to the low side of the main tonal. In fact, as one moves higher
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Figure 111.8. Spectra, N =2 lattice elements just below and above lower threshold.
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Figure 111.9. Spectra for N=2 lattice elements at 5 1% and 75 % of unstable band.
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into the band, one sees the distinction in sideband distribution between driver and

driven element break down, and one has to rely primarily on peak amplitude to

classify. The second element, based on this, is clearly a driving element, and it still

exhibits the predominant low end sidebands. It is also beginning to switch, as

indicated by the greater amount cf noise.

The trends seen in this small sampling of spectra in the inter-

threshold band are valid throughout the band. As one moves from just below the

lower threshold to just below the upper threshold, one sees a gradual move from

monofrequency response to a response with many sidebands. The number of

sidebands grows as amplitude increases, but it does not grow with time at a given

amplitude (this is different than what one would expect with a Benjamin-Feir type

instability). There is a clear distinction low in the band between driver and driven

element, both in amplitude and sideband location. This distinction due to sideband

location breaks down as one moves above the midpoint of the band, due to the

element spending an equal amount of time in each of the roles. As seen above in

Figures 111.5 and 111.6, an element near the boundary spends large segments of time

in one role or the other, then may switch in a chaotic burst of activity to the other

mode. Regular switching of roles between driver and driven does not begin until

amplitude is well above the boundary between the two domains of attraction. At

first irregular, or chaotic, it becomes regular as one moves up in the band, which

corresponds to what has already been seen in the time domain.
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Finally, looking at the lattice between the two amplitude thresholds

in the phase domain yields additional insight into the behavior of this complex set

of states. Figures 111.10 and H.11 show a succession of phase diagrams for the same

lattice element shown in Figures 111.8 and 111.9 in the frequency domain, and Figure

111.7 in the time domain. The values of amplitude used are also identical to those

of Figures 11.8 and 111.9, allowing direct comparison. The first phase diagram,

corresponding to an amplitude just below the lower threshold, is very clean -- this

is stable, monochromatic motion, as seen in the spectrum. In the next diagram,

taken for amplitude slightly above the threshold, the same underlying shape is clearly

evident and takes the majority of the "hits" of the Poincare section, but there is now

a significant amount of scatter both in and out of the original shape. The idea of

"weak instability" is here given a vivid graphic representation.

The phase diagram for 51%, which corresponds to the highly chaotic

condition at the boundary discussed above, the original shape is still visible, but its

banded structure has broken down. The region is more amorphous, although some

hint of the banded structure can still be discerned. The amount of scatter is greatly

increased, and there is a slight darkening in the inner part of the ellipse,

corresponding to the fact that, with switching of roles taking place, if on an irregular

basis, does lead the element to spend an above average amount of time at small

energy levels. In fact, the well defined outer boundary of the ellipse corresponds to

the maximum energy state, that is, the state wherein all of the system's energy is

concentrated for a brief moment in this particular element. Points outside this ellipse
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Figure 11.10. Phase diagram for just below and above lower threshold.
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Figure 111. 11. Phase diagrams for 5 1% and 75 % of band.
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are not possible in a free system with the initial conditions given. The fact that this

boundary is seen here and not in the previous phase diagram is due to the failure,

low in the weakly unstable band, of the driving element to drive the other until it

is completely spent (at which point the other element has all or nearly all of the

system energy). Switching of roles cannot take place until this outer ellipse is

reached at least occasionally; with the ellipse so well defined, the existence of

switching, even chaotic, is reasonable. At 75% of band, the second diagram in

Figure II1.11, the regular switching of the system is readily apparent from the

existence of the dark orb in the center and the dark ellipse without structure that

exists halfway out to the maximum energy ellipse. Thus the use of phase diagrams

corroborates and illuminates what has been learned from the time and frequency

domain results.

Figures m.12, 111.13 and 111.14 show the behavior of lattice elements

just above the Benjamin-Feir threshold. In Figure M.12, the time series of the first

element of a lattice with 0.15 coupling is seen to exhibit regular switching, but the

period of the switching is variable about an average value. When compared to the

series in Figure 111.5, which used an identical time step, it can be seen that the

average period is roughly the same; in fact, this value appears to be a function of

coupling only. One could visualize the envelope of this regular switching behavior

as simply a dnoidal wave (Figure 11.5) with kinks between every peak, although this

is rather a bold step of imagination. Figure 111.13 shows various spectra for the

maximum coupling case (the same lattice as in Figures 111.3 and 111.4). The third
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Figure 111. 12. Time series, N =2 lattice just above Benjamin-Feir threshold.
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spectrum was the last taken; the growth of sidebands is clearly evident. Finally,

Figure 111.14 shows the very diffuse phase diagram. One can see readily, as in

Figure 111.11, that switching is occurring, but there is little else to glean from the

phase diagram.

This rather detailed look at the band between the approximate N = 2

theory threshold of instability and the Benjamin-Feir continuum theory of instability

support the idea that the two theories are complementary. When the first threshold

is reached, a weak instability begins to manifest itself due to the passing of the

parametric excitation threshold amplitude. As amplitude increases, a chaotic

boundary region is traversed wherein switching between driving and driven states

occurs irregularly; this boundary region passes into a region where switching is

regularly, although not precisely periodic. Above this, one reaches the Benjamin-

Feir thresbld, where the mechanism for strong instability is the dumping of energy

into successive sidebands. The transition between the two types of instability is not

clear or dramatic, but it is apparently real.
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Figure 111.13. Spectra for element just above Benjamnin-Feir threshold.
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Fig. 111.14. Phase diagram for an element just above Benjamin-Feir threshold.
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D. THEORY OF CUTOFF MODE SOLITONS.

1. NLS Solitons in the Cutoff Lattice.

Larraza and Putterman [19841 showed that, for the static case, with

frequency below the linear lower cutoff frequency and a softening lattice, a breather

soliton is a solution:

2o( M._r ID. 1
A(x) - 3a ec{ c 2 Ill.D.1

When the sign of the nonlinearity is changed to hardening, a solution was shown to

be, in the p= 1 limit:

__- 2 2  - lI.D.2A ( x ) - - 3 & -1 2 c ( x i

(Denardo [1990]). When considering the upper cutoff case, Denardo showed that

A(x) -'(

is a kink soliton solution of the NLS equation for a softening lattice, if wo is replaced

by co and
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2 2 2 -L (2X-x) III.D.4
-3a C2 j

is a breather for the hardening lattice.

With the exception of this last solution, Denardo [1990] observed all of the

soliton solutions for the NLS approximation of the discrete lattice experimentally.

However, for the pendulum model results, the observations were only qualitative,

since it was not possible to accurately measure the intrinsic lattice parameters of

damping and coupling, and the coupling itself was probably not truly linear. This in

fact was the starting point that motivated the work of this thesis -- to verify t&

experimentaI results numerically and compare them with the theoretical predictions.

This work is presented in the next section.

Before we proceed to the numerical work, some observations on the

symmetry properties of the theoretical predictions and their underlying physical basis

need to be made. The symmetry is dual for the cutoff modes -- there is symmetry

about zero in a, and there is symmetry from upper to lower cutoff. We note by

examining the equations for the various soliton solutions listed that the parameters

are identical for both breathers, with the exception of substitution of frequencies and

sign changes which are necessary because of the changes in a and in position on the

dispersion curve. The same holds true for the kink solutions.
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E. NUMERICAL OBSERVATIONS OF SOLITONS IN CUTOFF MODES.

In his experimental work, Denardo [1990] showed that three of the four

solitons predicted by the NLS theory for cutoff lattices did indeed exist. He was

unable to confirm the existence of one, the upper cutoff hardening breather. In

addition, he mapped the drive planes of the solitons he observed. These mappings

consisted of varying drive frequency and amplitude and determining the region in

the plane so mapped in which a given soliton was stable. His lattice work

necessarily suffered from a lack of quantitative comparison to theory, however,

inasmuch as the actual coupling and damping parameters of the lattice were not

determined. This was the initial starting point of the research presented here -- to

provide quantitative corroboration of Denardo's results and to compare them with

the NLS theory. This effort in turn led to many additional areas of exploration,

which are detailed in later chapters.

Numerically, all four of the NLS solitons were found to exist in stable states.

An additional soliton-like structure, a hardening upper cutoff kink, was also

identified. In the four NLS cases, the agreement to theory was found to be

excellent, with the degree of departure from theory apparently diminishing linearly

as the time step is decreased. At a time step of one percent of a period, the error

was less than one percent, and it got better from there (see Appendix A). This close

match to theory also naturally led to the width-amplitude product being constant for

given lattice parameters, as indeed it was.
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In the detailed discussion of lattice model results in this and later chapters, we

consider scaled displacements such that the magnitude of the nonlinear coefficient

is unity, with only the sign varying from hardening to softening systems. The natural

frequency for a single uncoupled oscillator is also always set to unity, except in

Chapter V, where nonuniformities are discussed. Thus, the lattice in each case is

characterized by coupling and damping constants. The drive is characterized by its

amplitude and frequency. Thus, the parameter space is four dimensional; however,

only a small part was investigated here. It is also important to note early in the

discussion of actual lattice results that they are not unique, for a given point in four

dimensional parameter space. For a given point, there can exist no solitons, there

may exist one or more soliton solutions, and the solitons that do exist may exist in

groups or singly. Thus initial conditions play a critical role in the ability or inability

to achieve a desired state. Also, since the program used was highly interactive, it

was possible to approach a point in parameter space in several different ways, each

having slightly different results. As an examination of the tuning curves for

parametrically driven oscillators makes clear, for example, the system is much more

sensitive in general to drive frequency changes than to drive amplitude changes.

To give a detailed example of the challenge offered by the complexity of the

problem, consider the attempt to reach a state that is in the upper left corner of the

drive plane region of stability for a structure - that is, a state where drive frequency

is low and drive amplitude high. If one tries to reach this state from a precursor

state that is high in amplitude but at a higher frequency, the transition will be
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impractical or impossible (I do not know which), since, for any reasonable frequency

increment, the transient at high drive amplitude is far too great, and the system

invariably either blows up or transforms into an unrelated lattice structure. If, on

the other hand, one approached the state by starting from a higher frequency, lower

amplitude point and moving frequency to the desired value the transients will be

manageable, and one can then easily increase the drive amplitude to achieve the

desired state. This simple example points out the characteristics of this work which

made it very much like trying to chart out an unexplored sea. It also emphasized the

great value of interactive numerical analysis. Very few of the results achieved in this

thesis would have been possible if a traditional numerical routine where one puts in

a parameter choice and gets an output, then repeats the process, is used.

We begin our look at cutoff solitons with the NLS cases, shown in Figures

II.15 through 111.18. The upper and lower cutoff solitons are, theoretically,

symmetrical, as discussed before, so we will analyze in detail only the hardening

cases. They offer a richer harvest, since they are not constrained by a potential

energy barrier, and so can exist at arbitrarily high amplitudes. The theoretical plot

for each is shown, and the good agreement is apparent. The evident difference at

the low amplitude elements in the kinks are characteristic of all of the numerics --

for a given time step, the overshoot error is larger for smaller amplitudes. As in the

larger amplitudes, however, the smaller amplitude elements can be brought

arbitrarily close to theory by shrinking the time increment sufficiently.
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While these solitons were somewhat difficult to achieve initially, they are

remarkably robust structures. In fact, in the case of the kink, the only way to get rid

of it is to annihilate it with an antikin., (which was done numerically on numerous

occasions), or to destroy the cutoff mode. When one increases or decreases the drive

amplitude, the kinks sharpen or broaden accordingly, while maintaining there

position and identity. However, there is one way that one can force a significant

change in the kinks. As the amplitude is increased, the kink sharpens until it gets

to a point where the structure with a node element is unstable to random

perturbations. The kink undergoes a transition, and arrives at a state where the

node is between two elements, as in Figure I1.19. This is effectively a one half

lattice site shift in the position of the kink. This phenomenon, which will be seen

again in Chapter TV, is not well understood theoretically; in fact, as the studies in

Chapter IV will make clear, there is in some circumstances a definite preference in

the discrete lattice for the masses to be at certain definite points of the underlying

waveform (i.e., the nodes or the peaks, etc.). An interesting phenomenon of the

breather, noted experimentally by Denardo, is the existence in the drive plane

(Figure 111.20) of a region where a quasiperiodic state exists (Denardo [1990]).

Further, if one proceeds through this quasiperiodic region, a region where a highly

self-focused state exists is reached. This state was characterized in the experimental

lattice by one element oscillating with an amplitude of about 50 degrees while the

two adjacent moved slightly and the remainder of the lattice was at rest. This

behavior is remarkable for a system that is driven by a global parametric drive --
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attempt was made to map the drive plane to the extent done experimentally by

D.,nardo (work which will be done by a follow on student), the existence of these

two states was verified quite early on numerically. Figure 111.21 shows the self-

focused hardening breather. Since this lattice is numerical and not subject to the

realities of physical systems, the ratio of amplitudes between the main and adjacent

elements is remarkably greater than 1000!

The quasiperiodic state is interesting in its own right, of course. The period is

observed to be stable in these systems; the amplitude of the large element grows and

decays in a regular cycle. These observations correspond to experimental

obser-,ations made earlier by Denardo [1990]. This quasiperiodic state can be

understood, I believe, as a transition zone similar in general concept (although not

in detail) to the transition zone between kinks with and without nodes -t masses

(there is a range of parameters where either state can exist; it is not until one leaves

this range that the transition takes place from one to the other). To the right and

below the quasiperiodic region in the drive plane , the breather essentially occupies

five lattice sites. Above and to the left of the quasiperiodic region, it occupies only

three sites. In the quasiperiodic region, it seems that the two elements adjacent to

the high amplitude element first drive the fourth and fifth elements, and are in turn

driven by the main element. At some point, they cease to drive the outer elements,

which then drive the inner elements until they decay and the process repeats. Thus

the quasiperiodicity may be viewed as a nonlinear beating process similar in

character to the case studied in th two element lattice in Section 3. These self-
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links, and may in some similar form be significant as biological solitons, although

these connections are speculative.

The fifth type of cutoff soliton was discovered quite by accident. It is a

"positive energy" hardening upper cutoff kink, shown in Figure 111.22. By positive

energy, we refer to the fact that the total energy of a lattice with this kink is greater

than that of a uniform lattice (the NLS kinks are by contrast negative energy kinks;

in fact, the ability exists with the lattice program to measure the energy of kinks and

other structures. This was not done due to time constraints, and may be an item of

interest in follow on work). Due to the late date of their discovery, only preliminary

study of them has been conducted. They are effectively "brightons", which are

solutions of the form

A(x) -KJI +asech2(Z(x-xd) Ill.E.1

where K and Z are dependent on lattice parameters (Larraza and Putterman [1991]).

Exact expressions for K and Z have not yet been derived; this theory is for

conceptual purposes. Additionally, these brightons appear to involve violations of

the Benjanin-Feir stability criteria; this will be explored in more detail later.

The brightons, like the rest of thc cutoff mode solitons, are remarkably robust

structures. They maintained their identity even when the time step was increased

to 25 percent of a period and a perturbation of five percent was added.

Topologically, the smallest brighton is one in which exactly two elements are
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positioning occurred at lower amplitudes. As the drive amplitude was lowered to

0.1, the structure of Figure 111.22 broke up and underwent a prolonged and confused

transient, ending up in the state shown in Figure 11.23. This is a very complex state.

The brighton appears to have become a darkon, but is equally clearly not an NLS

hyperbolic tangent kink. The mode itself has undergone a transition into something

which preserves wavelength at two but is otherwise quite different. It is not merely

shifted spatially, for no shift could give the amplitude division shown and still have

wavelength two. The only way to describe it is to think of it as an upper cutoff

mode that has a DC offset, which may also explain the transition of brighton to

darkon. Why this should be so is not understood even slightly at this time.

It remains to be seen whether an analogous structure exists in the softening

lower cutoff mode; in fact, there may exist many more solitons in the "simple" cutoff

modes. This complexity in the simplest of modes, which can be described by a

relatively simple evolution equation in which all but the second spatial derivatives

can be ignored should lead one to expect a far more difficult time dealing with

intermediate modes, the subject of the next chapter.
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IV. THE NONLINEAR LATTICE II: INTERMEDIATE MODES

A. THE "LAMBDA FOUR" MODES.

The numerical study of solitons in intermediate modes requires first that the

modes themselves be understood. It turns out, at least for the "lambda four" modes

(those whose wavelength is four), this is not a trivial matter. The plural is used

because there exist a variety of manifestations, each of which has its own

characteristics and preferred region in the drive plane. The lambda four case was

chosen to follow the cutoff modes in order of study because it had been much

observed experimentally. The mode has a natural linear frequency given by

IV.A.1

There are three known stable states for the lambda four pure mode, sbown in

Figures IV. 1, IV.2, and IV.3. During the study of these modes, they each acquired

a descriptive vernacular name. The first to be studied was the "plus zero minus

zero" or "+0-0 mode, shown in Figure V.1. It was during the study of this mode

numerically, and in parallel on the experimental lattice, that the preferential

existence of the "plus plus minus minus" or "+ + -" mode in certain regions of the

drive plane was discovered. The third stable version (there are presumably many

more...) was discovered during the numerical study of the "+ 0-0" mode drive plane.
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The drive plane for the "+ 0-0" state of the lambda four mode was studied

extensively as a prelude to the study of kink drive planes (the drive planes for the

other two states have not been studied systematically yet). Figure IV.4 shows the

drive plane study results for one set of initial conditions. The lattice used was of

forty elements. It is probable that, for a lattice of different size, the exact positions

of the lines shown may vary, but how or whether they actually vary is unknown.

The very linear nature of several of the boundaries of the drive plane region of

stability was quite a surprise; the reason for the linearity is not understood.

The behavior of the lattice at each of the boundaries of the drive plane region

of stability proved to be very interesting, and provided much evidence to aid in the

understanding of the lattice's characteristics in general that proved valuable when we

moved on to the study of kinks.

The behavior of the lattice at the lower boundaries proved to be the most

complex. For all drive frequencies less than 0.98, the lattice went unstable when it

reached the boundary shown. The instability was slow to develop. This instability

is caused by the commencement, when amplitude is lowered to the curve, of very

slow and growing motion of the line of nodes (the O's in "+0-0"). This is also the

change that characterizes lattice behavior when the lower limits of the region of

stability of the uniform mode are reached for drive frequencies greater than 0.98;

however, the instability does not grow without bound there and will be discussed

separately.
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That this in phase motion of nodes begins to occur and that it grows can be

understood qualitatively by considering the potential energy in which the elements

rest. In the region of stability, the nodes are stable because they rest at the bottom

of a potential energy well caused by the coupling to the adjacent high amplitude

elements. In the pure mode, these adjacent elements have identical amplitudes, so

that the two opposite coupling forces exactly cancel. If we consider a slight

perturbation of the position of one of these nodes, it will feel less force from the

element in whose direction it moved, since the relative displacement has decreased.

Conversely, it feels a greater force from the other element. The net force acting on

the node element when it is displaced differentially from its rest position is then

restoring, and the nodes remain stable. In fact, the "numerical temperature" of the

lattice could be determined by zooming in the amplitude scale until the nodes were

seen to move -- a zoom of about 21 (or 1012, the double precision limit!) The

motion is random, and corresponds by analogy to the thermal motion of crystal

elements in their lattice positions. Now, as the drive amplitude is lowered, the

parametric excitation of the nodes decreases. At the same time, however, the

potential energy well in which they rest becomes shorter, since the amplitude of the

antinodal elements is decreasing. Proceeding by analogy, considering the natural

frequency of the node if it were to oscillate in the potential energy well as a simple

harmonic oscillator, this change in well height would lead to a decrease in natural

frequency. Using equation (I.C.13) for the threshold condition of parametric drive,

one sees that a decrease in natural frequency leads to a quadratic lowering of the
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drive threshold. While not rigorous, this discussion suggests how the lowering of the

well leads to a lowering of the drive threshold at a rate faster than that at which the

drive is lowered. Thus, at some drive amplitude, the threshold condition is met and

node growth occurs.

The reason the node growth continues until it destroys the mode (since this is

a softening system, this merely means the lattice has at least one site which goes

over the potential energy hump) is not well understood, although it may be related

to the Benjamin-Feir instability discussed in Chapter II for cutoff lattices. When the

nodes grow sufficiently to become commensurate with the amplitude of the antinodal

elements, they continue to act initially as a unified group. Thinking of them as a sort

of lower cutoff lattice embedded in the upper cutoff antinodal lattice, it can be seen

that, for amplitudes greater than some threshold which depends on coupling and

lattice size, the "nodal lattice" will become unstable to sidebands. For higher drive

frequencies, the response amplitude is lower, so there should be a threshold

frequency above which the Benjamin-Feir instability threshold is not reached. This

appears to be what happens at drive frequency of 0.98.

Above this threshold frequency, the nodes grow until a steady state is reached

such as that shown in Figure IV.5. In a phenomenon similar to the weak instability

which occurred for the N=2 lattice below the Benjamin-Feir threshold, a weakly

unstable path to chaos exists at the second threshold line for higher frequencies (see

Figure IV.4). This threshold occurs for decreasing drive amplitude, which is sensible,

since it is associated with increasing parametric excitation due to a still decreasing
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potential energy well from the antinodal elements. Recall that, for the two element

lattice, a threshold of weak instability was crossed which corresponded to the

exceeding of a parametric drive threshold; in this case, the parametric drive

threshold is for decreasing amplitude, and corresponds to the point where node

motion begins. The chaotic state of the two element lattice occurred as one moved

further from the drive threshold, as one crossed an apparently fractal boundary

between the switch',og and nor-switching basins of attraction; her,-, the switching

and non-switching analogy corresponds to the switching between nodal lattice being

driven by and driving the antinodal lattice Although this connection between

switching and non-switching is conjectural to some degree, since it is not absolutely

clear exactly what is happening at the chaotic threshold, it is clear that as we move

further from the threshold of parametric instability, a chaotic band begins at a

definite threshold.

Throughout this small chaotic region, the nodal lattice continues to maintain

its identity and oscillates at a mean amplitude well below the amplitude of the

antinodal lattice. Its motion is jerky and aperiodic, however, which typifies chaotic

behavior. As in the case of the two element -ttice's approach to chaos, the

development of the nodes as they approach the chactic threshold can be illustrated

well using frequency and phase domain visualizations. In Figure FV.6, the spectra

of a nodal element are shown for drive amplitudes 0.075 and 0 056. The first is well

above the threshold for node motion (which is 0.056); the spectrum .s of thermal

noise in the rough vicinity of the drive frequency. The second is taken ec" ly in the
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growth of the nodes. The frequencies present are 1.10 and 0.87, which do not match

the drivc frequency of 1.0434, but are the frequencies about which the thermal nc,ise

centered in the first spectrum. The fact that the main frequency is higher than the

drive frequency is consistent with the potential energy well idea, since this additional

potential energy will increase the frequency of the nodal elements. The growth of

the steady state oscillations of the nodal lattice as one lowers drive amplitude toward

the chaos threshold can be seen in Figure IV.7, which shows phase portraits of

several nodal and antinodal elements in their steady state at drive amplitudes of

0.053 and 0.051. The trend, which continues as one lowers drive amplitude, is for

the inner ellipses, which are the nodal elements, to grow outward, with the angle of

inclination of the ellipses unchanged. At the same time, the outer ellipses, which are

the antinodal elements (note they appear in opposite quadrants, since the antinodes

are in an "upper cutoff' arrangement), fatten up, with their inner edges broadening

and moving inward. As in the two element lattice case, this change is due to the

greater amount of energy transferred from antinode to node during each cycle; there

is as yet no switching of roles.

When the drive amplitude reaches 0.045, the ellipses are just about to touch,

as shown in Figure IV.8; the ellipses stretched a little further from this state and

then chaotic behavior began, as seen in the lower half of Figure [V.8. In a manner

similar to that of the two element lattice, the ellipses show large scatter. The spectra

of this chaotic state are shown in Figure IV.9 for a node and an antinode. The

characteristic spread spectrum of chaotic motion is readily apparent. However, as
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Figures IV.9 and IV.10 show, this chaos turned out to be transient in nature

(although it remained for many periods of oscillation). Figures IV.10 and IV.11 are

the same as Figures IV.8 and IV.9, only they were taken after the transient chaos

died out. Figure IV.12 shows the continuation of the effects seen before when

lowering drive amplitude; there were no transient chaotic states. Finally, at drive

amplitude of 0.042, steady state chaos set in. This is seen in Figure IV.13. Now

there is clear penetration of the outer ellipses by the point of the inner ellipses,

which I believe represents graphically the point at which switching of the nodes from

driven to driving state occurs.

An even more vivid graphical example of the route to chaos is seen in Figure

IV.14, which is a similar succession of phase portraits at various drive amplitudes,

with the drive frequency set at 1.054 (higher than in the previous example, which is

evident also from the lower threshold amplitude for chaotic motion). In the third

portrait of Figure IV.14, the lower point of the inner ellipse has clearly pierced the

region of the left outer ellipse. Figure IV.15 shows the same elements a few cycles

later, with the idea of chaos very obviously portrayed. One point worth making

about the change in shape of the outer ellipses is that, for all frequencies, when

piercing occurs, the tails of the outer ellipses stretch out and bend down toward the

coordinate (x) axis; this is because, as switching now occurs, these elements drive the

nodal elements until they are nearly at rest in the equilibrium position (i.e., at the

origin). This state was steady state (that is, it remained chaotic, and did not settle

out into an ordered system); no transient chaotic states were observed at a drive
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frequency of 1.054.

When drive amplitude was lowered still further, the lattice made a transition

from chaotic states to linear combinations of normal modes at about amplitude

0.035. This corresponds to the regime wherein the effects of the nonlinearity in the

equation of motion becomes insignificant. At somewhat lower amplitudes still, about

0.025, the lattice motion died out, as the parametric threshold for steady state

excitation was no longer exceeded.

The upper right line in Figure IV.4 forms the boundary of the region of

stability defined by a similar instability to that encountered at low drive amplitudes.

When this line is reached, the nodes begin to move, but they are exactly 180 degrees

out of phase with each of their node neighbors. The mecl~nism for this onset of

node motion, while probably related to that which drives the in phase motion just

described, is not understood. In all cases, the motion grows continually until the

nodes and antinodes are commensurate in amplitude. Depending on position on the

line of instability, various types of final states occur. For drive frequencies greater

than about 1.04, the state that tends to arise is the + + -- mode (Figure [V.2),

although, with just a slight push beyond the line of instability, one can achieve the

mode shown in Figure IV.3, which may be preferred for certain drive parameters

(this has not been checked). For drive frequencies less than 1.04, the transient

caused when the nodes become commensurate with the antinodes invariably causes

the lattice to blow up due to the usual potential energy problem. What is most

remarkable about the out of phase node motion boundary is that it is very linear all
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the way to drive frequencies equal to the upper cutoff frequency, where it bends

upward slightly. Why it should be so is one of the many aspects of the lambda four

modes that is not understood currently.

The final boundary of the stable + 0-0 region in the drive plane, the upper left

curve, is characterized by a totally unexpected phenomenon -- isochronous motion,

with respect to the drive, and DC excitation. When this boundary is reached, the

nodes move rapidly to a fixed DC offset, which is matched by a DC offset in the

antinodes, and stays there. If amplitude is further increased, the offset magnitude

increases, but at the second curve, the antinodes become unstable, breaking up into

complex modulated states which quickly lead to the potential energy problem and

lattice breakup. The nodes and antinodes, when they move to the isochronous mode,

may do so with an imposed modulation, depending on initial conditions as the

boundary is approached. the modulation stays fixed once the steady state offset is

achieved. Examples of modulated and unmodulated isochronously excited lattices

are given in Figures IV.16 and IV.17.

As is the upper right boundary, this boundary is very straight for a large range of

values. In this case, for frequencies less than about 0.91, the curve bends upward;

also as was the case for the upper right boundary, the reason for this profile is not

understood.

As this detailed look at the drive plane region of stability of the plain + 0-0

mode makes plain, the lambda four modes themselves, without solitons or other

complications, exhibit quite complex and interesting behavior that is not fully
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understood. The drive planes of the other forms of the lambda four lattice have not

been studied, either and may present an additional range of interesting phenomena.
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B. KINKS IN THE LAMBDA FOUR MODES.

As one might expect, considering the complexity and number of lambda

four pure modes, there exists a wide variety of kinks in these modes. Considering

just the +0-0 mode, we can argue on purely geometrical grounds for the existence

of four types of kinks, corresponding in effect to phase shifts of 90,180, 270 and 360

degrees. The profiles they must exhibit, shown in Figure IV.18, are based on the

requirement that the entire lattice oscillate at the same frequency. The classification

numbers given in Figure IV.18 will be used throughout the following to clearly

identify the various kinks; the profiles are based on a softening lattice, which was the

case considered in the pure mode drive plane analysis described in the previous

section. The main emphasis in this section is indeed on softening +0-0 kinks,

although results are also presented for hardening kinks and kinks in the other

lambda four modes.

All of the kink types shown in Figure IV.18 have been shown numerically to

exist. Representative examples are shown in Figures IV.19 through IV.22.

In addition, Figure IV.23 shows a Type IA kink, which is an antisymmetric version

of the Type I shown in Figure IV.18. Figure IV.24 demonstrates clearly the

distinction between symmetric and antisymmetric kinks. Presumably, antisymmetric

versions exist of the other kinktypes as well, although this has not been verified.

They are seen to be in good agreement with the expected general profiles.
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in order to make a clear comparison between kink behavior and normal mode

behavior, a drive plane study was conducted of a Type I kink. Figure IV.25 shows

the results of this study, with the outline of the + 0-0 pure mode drive plane overlaid

for comparison. Several striking results were obtained in the course of this drive

plane exploration, as expected, given the complexity of the modal drive plane

boundaries. In particular, the presence of the kink produced dramatic, localized

effects which appeared in many cases to compete with the effects in the wings, which

generally were identical to the ones discussed in the pure mode drive plane results

of the previous section. This is sensible, since in the wings, that is, far from the kink,

the lattice should be expected to behave as a pure mode.

Looking first at the lower boundary of the stable region for the Type I kink,

we see that the general behavior is similar for drive frequencies above 0.87. In

particular, however, w: note that the freq ency at which nodc growth stabilizes has

increased from 0.98 to 1.02. This is apparently due to the action of the kink in

driving the node growth, which occurs most rapidly in the vicinity of the kink.

Chaotic motion begins at roughly the same spot, with drive frequency of 1.06 and

amplitude of 0.041. A particularly striking phenomenon that was observed was the

migration of the kink to the right side of the lattice (from the middle) when the

drive amplitude was lowered to 0.037, and the chaotic motion was strong. Figure

IV.26 shows this kink after its migration.

Far to the left, below drive frequencies of 0.87, however, the boundary bends

upwards form that observed for the pure mode. The reason for this was not initially
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clear, until suddenly at drive frequency 0.795, the kink went through a severe

transient in which it made a transition from symmetric to antisymmetric states, with

the latter being much sharper, that is, occupying two vice four lattice sites. It

became clear then that the reason for the raised boundary is that, as we lower drive

frequency and increase response amplitude (since it is a softening system), the kink

tends to sharpen up. By analogy to the NLS kinks for which theoretical descriptions

are well established, this sharpening was expected; what was unexpected was the

sharp transient between kink geometries. This being the case, it appears that the

symmetric kink can survive even at very low drive frequencies, but only at elevated

drive amplitudes (which of course precludes node motion). If the amplitude is

lowered, the nodes begin to move so as to bring the kink to its more stable (or lower

energy) state, the antisymmetric state. As a qualitative check for this, it was verified

that the antisymmetric kink was stable much closer to the original boundary of pure

mode instability.

For drive frequencies above 1.06, which is close to the linear frequency of the

upper cutoff mode, the line corresponding to out of phase node growth follows

closely that of the pure mode, including the bending upward in the vicinity of drive

frequency 1.09, which is the linear upper cutoff frequency. However, below drive

frequency 1.06, the kink's stability boundary deviates sharply from the mode's. From

that point all the way left to the isochronous curve (which matched that of the linear

mode very closely), the boundary amplitude increased in a stepwise fashion. This

very unusual and inexplicable result was checked carefully at the points indicated,
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although it is possible that the boundary exhibits curvature in between the data

points shown. This deviation from the pure mode case extends to the type of

behavior as well as its location. In the small region above drive amplitude 0.11 and

between frequencies of 0.99 and 1.04, there exist stable states with out of phase node

motion; a steady state example is given in Figure IV.27. Observation of the

development of such a steady state makes clear what the mechanism of the

departure from the pure mode is. The kink apparently drives the nodes closest to

it, so that, for sufficient drive amplitude, the node motion is propagated down the

line of nodes and eventually grows. The node motion is thus a radiative event, and

the node motion is not precisely out of phase as it is when the "out of phase

instability" boundary is reached (that is, the upper right boundary of the pure mode

drive plane). When the drive amplitude is increased at drive frequency 1.04 to just

under the original out of phase instability curve, the lattice does indeed transition to

the + + -- mode in a complex (three kinks) state (Figure IV.28), suggesting that

boundary still exists, but is just not reached before the kink drives the lattice out of

its original steady state and into another. For drive frequencies below 0.99, the

effect of the kink, which is now sharper and of greater amplitude, in driving the

lattice is too great for a steady state to be reached with the nodes still small

compared to the antinodes; the system "blows up".

Not all of the kinks observed numerically were of the "pure" types shown in

Figures IV.18 through IV.23. Frequently, after some perturbation or change in initial

conditions the lattice would, after a transient of varying length, emerge with one or
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more complex kinks. An example is shown in Figure IV.29. Using mismatch

between left and right domains as our classification guide, we see that this is a Type

U kink (that is, we find that antinodes in the right hand domain are where they

should be if there had been no kink, but they are "up" when they should be "down" -

- Type II kink). Denardo has suggested that these complex versions of simple kink

types be called "excited kinks", which is an attractive nomenclature, since it recalls

the particle like qualities of solitons and confers on these states the characteristics

of a particle which is in an excited energy state. Another way of viewing these

phenomena, which ties in with the discussion later in this chapter of domain walls,

is as kinks with inclusions, which might be termed the solid state analogy -- viewing

these solitons as analogous to transitions in crystal lattices. Both views suffer from

a lack of mathematical underpinnings, but they offer complementary insights into

what is happening in the lattice.

In Chapter II, the symmetry properties of NLS solitons were noted and

verified. It is a matter of great interest to determine the point on the dispersion

curve, if there is one, about which this symmetry is based. Unfortunately, this

question has not been resolved. However, some tantalizing hints have been found.

In particular, it has been found that, if one takes a Type I softening kink of the + 0-0

mode and performs the following manipulations on it, it transforms into a positive

energy hardening kink:

a -. -a IV.B.1
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W -" -I IV.B.2

where we have relied on the fact that we set

o0-al1. IV.B.3

The hardening kink thus created has a span that is similar to that of the original

softening kink, as seen in Figure IV.30. In the cutoff modes, such a transformation

would convert from breather to kink, but here it only takes us from a negative

energy to a positive energy kink -- the wings here still have finite amplitude. Thus

the relation of this phenomenon to the symmetry between breathers and kinks is not

confirmed; in fact, no attempt has been made yet to determine whether lambda four

breathers even exist.

A classification of hardening + 0-0 kinks can undoubtedly be made along the

lines indicated above for the softening case; here we have focused almost exclusively

on the softening case in order to take advantage of the experimental work going on

with the softening pendulum lattice. An additional type of hardening + 0-0 kink has

been observed, and is shown in Figure IV.31.

One phenomenon that was observed in a hardening lattice that has not been

observed elsewhere yet, and which has tremendous possibilities, was a temporally

phase shifted kink (Figure IV.32). Whereas all of the previous nonlinear structures

studied in this work and its predecessors have relied on spatial phase shifts and
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amplitude modulation to maintain monofrequency response, which is the bottom line

requirement for steady state to exist, this kink relied additionally on an eight degree

temporal phase lead in one of the elements to maintain monofrequency response.

There is no reason to assume that there isn't an entire range of phenomena relying

on similar phase shifts, but thus far only the one example has been observed (to my

knowledge).

The extreme richness of behavior encountered in the +0-0 mode led to a

conscious decision to focus on it to the virtual exclusion of the other lambda four

modes. However, there is every reason to expect a similar degree of complexity to

govern the behavior of these modes as well. The large number of additional modes

intermediate between the cutoff modes have been studied almost not at all, although

many kinks have been seen in them as a by product of the work presented here.

Specifically, kinks have been observed in modes with wavelengths of three, five, six,

seven, and eleven. The phenomenon of kinks appears to be ubiquitous.

C. DOMAIN WALLS IN THE NONLINEAR LATTICE.

The phenomenon of domain walls is well known from the study of crystal

structure, electromagnetism, and superconductivity. A domain wall in a lattice is a

(uaually sharp) boundary between two different domains. An example would be a

boundary between the upper cutoff mode and the lambda four mode. Typically, the

two domains are independent of each other and of the wall beyond a very short

interaction distance; that is, domain walls are local phenomena. They have been
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observed experimentally in the pendulum lattice, although systematic study only

oegan recently, in parallel with this work. There is very little theoretical

understanding of the phenomenon, however, especially when the transition between

domains takes place over a finite length scale.

While domain walls had been a topic intended for research at the end of this

wort-, if at all, events intervened when they appeared on their own during an

investigation of lambda four kinks. When the positive energy (Type II) lambda four

kink was first demonstrated, the form obtained was not that given in the previous

section. In fact, it was an "excited" state, or a state with inclusions, depending on

how one chooses to view the phenomenon. Figure IV.33 shows the original state,

and Figure IV.34 shows what appeared when the indicated elements were removed

(by dumping the data to a file and then editing the file). As guessed, the removal

of the indicated elements did not adversely affect the stability or identity of the kink.

The remarkable flatness of the "kink", as it was initially viewed, suggested strongly

that it might instead be a domain wall. To test this hypothesis, the elements

constituting the flat region of the structure were removed and the latice restarted.

Not too surprisingly, a stable positive energy kink of normal size resulted. However,

it was also possible to extend the flat region by placing identical elements (i.e.,

elements with same amplitude and velocity) in the middle of it, and then removing

the original primary domain. This resulted in a stable negative energy kink of the

upper cutoff mode!
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The simple elegance of this result strongly suggests that domain walls might

profitably be viewed as regions where a negative energy kink in one domain and a

positive energy kink in the other exactly match some set of boundary conditions,

such that the pair of kinks is stable, and the domains on each side are unaffected by

the presence of the other. It is interesting to realize that the use of periodic

boundary conditions in my model made this conclusion more evident, since one

always needs and even number of domain walls in order to meet the periodic

boundary conditions. Thus the idea of either domain as an inclusion in a kink of the

other is visually evident, whereas if domain walls had been studied as structures in

their own right from the beginning, the connection might not have become apparent.

Since that auspicious beginning, the only significant result obtained concerning

domain walls (excepting the reaction to media nonuniformities, which will be

discussed in Chapter V), is that they too are ubiquitous. This fact should not be

surprising, since kinks, the building blocks (evidently) of domain walls, are

ubiquitous. In fact, the wide variety of domain walls observed to date, including the

extreme case of upper cutoff/lower cutoff domain walls, suggests that, for any

positive energy kink, there will exist a domain wall solution with any mode that

exhibits a negative energy kink, whose amplitude would be higher than the original

mode, and vice versa. So, for example, in the hardening case, one would expect an

upper cutoff positive energy kink would have domain wall solutions with = other

mode which the lattice can support (i.e., limited only by lattice size and mode

stability constraints).
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The further study of intermediate modes is obviously necessary, and domain

walls are one of the most important areas. Their potential bearing on many

technologically important areas in solid state physics and critical point phenomena

demands a close examination. Moreover, the need for a comprehensive theoretical

treatment that allows all of the phenomena observed to date is critical.
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V. EXTENSION OF THE BASIC RESULTS.

A. THE TWO DIMENSIONAL LATTICE.

As a natural extension of the work reported to this point, a two dimensional

model using the same physical ideas was developed. Only some very preliminary

work has been done, but enough has been discovered to warrant future work in this

area. While no theoretical work has been done for the two dimensional case yet, it

will be useful to speculate a little on the likely course the theory will follow, since

it allows an interpretation to be made of the results presented that at least seems

reasonable.

The model used still featured nearest neighbor interactions only, but now in

two dimensions. Diagonal interactions are specifically ignored, however. The exact

equation of motion is given by

2c 
3  V.A. . 2 .1

Here m and n represent the row and column number, respectively. We can see

quickly, by analogy to the one dimensional case, that the "upper cutoff" case, where

each element is exactly 1800 out of phase with each of its four neighbors, has a

linear frequency given by
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2 2 V.A.2

01,1-00'8y.

It is also clear that, in the case where the lattice is upper cutoff along one of the

axes of the lattice and lower cutoff along the other, that

2 2 2 V.A.3

which of course is the linear upper cutoff frequency for the one dimensional lattice.

This is obvious, since the lattice sees no coupling in the lower cutoff axis' direction.

In fact, the elimination of diagonal interactions effectively decouples the two

orthogonal directions x and y, so that the linear dispersion relation can be written

by direct analogy to that of the one dimensional lattice:

to W,)+ 4 ysin2()+ 4 ysin2LY) VA22 2x

Considering the cutoff cases, of which there are now four, we see that, again

by analogy to previous work,

-2o e+.te)+1)2V.A.5

where m and n are either 0 or 1. Without for the time being proceeding to formal

proofs, we note the similarity of this equation with the one dimensional case, and

speculate that the system may be represented by a two dimensional NLS equation.
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Fig. V.I. Examples of possible 2D cutoff mode NLS solitons.
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Accordingly, it is reasonable to suppose that one might find solitons in the two

dimensional cutoff lattice resembling the NLS solitons observed in one dimension.

It may be that the soliton is truly two dimensional, or it may be coupled to a pure

mode in the orthogonal direction. Figure V.1 shows some of the structures one

might hope to find in the cutoff two dimensional lattice.

Not surprisingly, the two dimensional lattice displayed fascinating behavior

from the very beginning. The initial conditions used for most of the earliest work

consisted of sinusoidal modulations in the x and y directions, with exactly one

wavelength spanning the x and y directions. In all of these cases, the lattice

displayed behavior that could be divided neatly into three time scales. On the first

time scale, of a hundred or so periods, consisted of a rapid disordering of the lattice

as the initial disturbance radiated energy (now in two dimensions, so the radiation

is more complex). Over the next several hundred periods, in every case the lattice

resolved itself into a small number of domains of the original modulated cutoff

mode, with each of the domains being 1800 out of phase with its neighbors. Figure

V.2 shows the end of such a period for one set of initial conditions. On the final

time scale, a mechanism which is not well understodd but acts in a fashion similar

to surface tension (see below) did indeed reduce the lattice to a single cutoff

domain. This time scale was often very long, since in some cases the surface tension,

or net difference in force sensed by each domain, was often quite small. Figure V.3

shows the same lattice as seen ir Figure V.2, late in this evolution.
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Fig V.2. A 2D lattice at the end of the second time scale.
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Fig. V.3. The same lattice, late in the final time scale.
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The results of these initial investigations made it clear that, if kinks were to

exist, they would have to exist in some geometry which gave neither domain (there

are effectively only two, since they are 1800 out of phase) a dominant position. A

few obvious geometries are shown in Figure V.4; all of them did indeed support

kinks. Figure V.5 shows a very striking example, which resembles two NLS negative

energy kinks, one in the x and one in the y directions. This result was very

encouraging, if not unexpected, for it strongly supports the notion that the theoretical

description of the two dimensional lattice ill be very similar to that of the one

dimensional lattice. Of course, this rosy picture would immediately fall apart if

diagonal interactions were allowed in the model, as cross derivatives would then

abound in the equations of motion!

Figure V.6 shows the same kink as seen in Figure V.5, but with a complex

structure that resides at each of the intersections between the x and y kinks. This

was actually the first two dimensional kink seen, and was used as the starting point

in getting to Figure V.5. The structures seen are very stable, and they are certainly

not yet understood.

The final quick foray into the two dimensional arena which was undertaken

was an effort to determine if there existed stable breathers. Initially, it was felt that

such structures might not exist, due to the existence of diffraction effects. However,

they were found to exist; in fact, it turns out that if one starts with a lattice

completely at rest and then kicks one element (preferably the middle one for

visualization purposes) with a reasonable amplitude (i.e., enough that nonlinearities
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Fig. V.5. An actual 2D lattice with symmetric inks.
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Fig. V.6 The same lattice with complex structures at the kink interseczions.
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can play a significant role),and in fact a great deal of radiation occurs initially which

leaves behind a very clean two dimensional breather, seen in Figure V.7. It is

actually easier to get a two dimensional breather than a one dimensional one,

because the radiation spreads out in two dimensions and is much more rapidly

attenuated. Even in the free case, a very clean breather can be obtained, since the

energy radiated away as the breather seeks its equilibrium shape has to spread itself

over the entire two dimensional span of the lattice, resulting in very low amplitude

radiation passing through the breather at any given time (although of course there

is always some).

A theoretical consideration which was suggested for the first time by the results

obtained with the two dimensional lattice is the idea of "surface tension" at domain

boundaries. Suppose for the moment that two similar domains are connected by a

kink of some two dimensional shape. An example which will motivate the discussion

is given in Figure V.8. The question arises whether one or the other of the domains

will dominate the other; that is, will one domain gradually force all of the elements

of the other to shift modes? As it turns out, this is indeed the case. In fact, for two

domains of similar amplitude (i.e., identical domains separated by kinks), the domain

which is concave will dominate the convex domain, regardless of the size of the

domain.

That this is the case is reasonable, when the issue is considered as analogous

to the phenomenon of surface tension. Since the concave domain exerts more force

per boundary element on the convex domain than vice versa (because it has more
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Fig V.7. 2D breather resulting from kicking of middle element.
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elements interacting at the boundary), there is an effective surface tension, or net

force, acting on the convex domain. Since, unlike the case of an air filled bubble

being compressed in water, there is no reaction force which builds up as compression

takes place, the convex domain is gradually "compressed" away. It should be noted

that this phenomenon depends on the fact that coupling of an element to its home

domain is negligible, so that one can simply add up the coupling forces to the

opposite domain to determine the dominant domain.

Presumably a modified version of this rule would be operative when dissimilar

domains are in contact; however, it is not immediately clear what exact form the rule

would take after the differences in mean amplitudes are accounted for. In any case,

no numerical data for such cases has so far been collected, so it remains a truly open

question (as does virtually everything having to do with two dimensional lattices

given by (V.A.1)!).

This brief extension of the lattice model into two dimensions leaves much left

to explore. It is clear, though, that there are many new phenomena likely to reward

such efforts. The model also permits study of surfaces, including radiation and finite

structures, providing that sufficient computer power is available to provide a small

enough discretization of the surface (that is, more memory is needed, since the

model is limited on the machine used to a 40x40 lattice, which is not adequate to use

for a surface model).
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B. THE NONUNIFORM LATICE.

As a second attempt to extend the work reported in Chapters III and IV, an

investigation was made into the effects of nonuniformities on lattice behavior. To

some extent, this work was motivated by results obtained on the experimental lattice,

since it was assumed that that lattice was nonuniform, and the effects and indeed

types of nonuniformities needed to be understoodif the experimental work is to be

joined to the numerical. Additionally, it was desired to test a method of removing

the effects of nonuniformities which had been tried by the group at UCLA with

which we closely worked. This method consisted of first measuring the amplitudes

of each element in the lattice in a pure cutoff mode, then dividing these results into

the measured lattice amplitudes in the presence of solitons. While this method was

based on intuition, it proved to give smooth results from results that had been

difficult to interpret. This method of division greatly facilitated their study of

solitons, but it needed to be verified before full confidence was placed in it.

Originally, variations in coupling, natural frequency, and nonlinear coefficient

were tried. The nonlinear coefficient was found to affect results only slightly.

Accordingly, only results from nonuniformities in coupling and natural frequeucy are

discussed in this chapter. Of these, natural frequency was the most studied, although

only because of time constraints.

The parameters were varied in three different methods -- randomly, with a

linear gradient, and with sinusoidal gradients. The program allowed the user to

choose the type of variation and the amount. Also, it was during these investigations
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that a waterfall display was added to the program so that a parameter could be

instantaneously changed by one of the three methods just mentioned, and the impact

viewed in a format which made changes easier to identify.

Finally, before proceeding to discuss actual results, it should be noted that no

attempt has yet been made to fit these and the experimental results into a theoretical

framework. This work follows in the time honored tradition of forging ahead with

experimentation in order to provide grist for the theoreticians' mill, although I

frankly would have preferred to have tended that mill myself, had time allowed!

The first result was obtained early in this thesis research, using an older version

of the program in which the nonlinear coefficient was allowed to vary. It was found

that the division method developed by the UCLA group [Putterman, unpublished,

19901 was valid. An example is shown in Figures V.9 through V.11. The rough

soliton-like structure in Figure V.9 was divided, element by element, by the

amplitudes of the cutoff mode in Figure V.10 to produce the smooth soliton seen in

Figure V.11. The method was found to be valid for both coupling and natural

frequency variations. One additional item noted, which served as the starting point

for later work on nonuniformities, was that, for softening nonlinearities, the solitons

invariably moved to the local minimum in the varied parameter. Since reduction in

coupling leads to a reduction in frequency, this result means that, in general,

softening kinks move to the local minimum frequency in the lattice.

In order to characterize the behavior of kinks, breathers, and domain walls in

various types of nonuniform lattices, we returned to this line of inquiry recently.
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Fig. VA9 Soliton in a random coupling lattice.
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The initial results have been consistent, but as many questions have been raised as

have been answered. The first result in the second round of nonuniformity work

complemented the last result of the first round -- hardning kinks move to the local

maximum frequency in the lattice. In the case of continuous gradients in either

natural frequency or coupling, the hardening kinks moved steadily to the right

(increasing frequency direction) until they reached the end of the lattice, where there

was a discontinuous drop in frequency due to the periodic boundary conditions.

Since there were always two hardening kinks, this provided a convenient way to

collide kinks, since the leftmost kink inevitably caught up with the pinned right hand

kink. As expected, these encounters produced annihilations of both kinks, leaving

an undisturbed nonuniform lattice mode.

In order to better study collisions, and to discern whether the motion was a

diffusion process or a process of motion in a potential field, a sinusoidal variation

of coupling was introduced, with one kink on either side of one of the peaks in the

variation. In particular, we wanted to find out whether, when a kink arrived at a

maximum frequency, it overshot the mark and exhibited oscillatory behavior. In

fact, this did not happen at all, so we were also unable to observe two kinks passing

through one another in this way (since they both stopped at the local maximum).

Nevertheless, this sinusoidal parameter variation feature was found to be useful for

separating kinks, since, if one places a minimum between two kinks, they will move

in opposite directions. Since the variations could be turned off as easily as on, one
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could separate two kinks using a sinusoidal variation and then turn off the variation

to observe the cleanly separated kinks in a uniform lattice.

We turned next to domain walls, anxious to see whether they moved

preferentially in one direction or the other. In fact, no matter how hard we pushed

the lattice, we could not get domain walls to move. The UCLA group independently

reported similar results. Since one possible mechanism for this pinning of domain

walls was that negative energy and positive energy kinks might tend to move in

opposite directions (viewing domain walls in this instance as paired kinks), I

immediately set after positive energy kinks, to see if they moved. Unfortunately,

they also appear to be pinned. Why this should be so is not clear, and the fact that

it is so can be interpreted as an argument against the notion that kinks and domain

walls are intimately connected phenomena. On the other hand, it may simply be

that the departure from normal mode amplitude by individual lattice elements is the

key cause of soliton motion in a nonuniform lattice. If this were the case, and it

doesn't seem unreasonable to suppose that it might be, domain walls and positive

energy kinks alike would not move, or would move so slowly that the experiments

performed to date would not have detected the motion, since the changes are small

in these cases. Another way of expressing the idea is to note that, in the negative

energy kinks considered here (only a small subset of those possible), the envelope

one would draw of the lattice often changes sign across the kink, and always makes

a major transition in the kink region. In the positive energy kinks and domain walls,

and possibly "darkons", the envelope only changes slightly, and retains the same sign
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throughout. One possible way of checking this idea is to measure the speed of

motion of negative energy kinks as a function of amplitude, since presumably if the

hypothesis were valid, they would move more rapidly as amplitude increased. In any

case, this area is one which might fully occupy a future thesis student.

For certain types of abrupt changes in lattice parameters, such as a strong

discontinuous drop at the lattice ends, solitons were actually created when the

parameter change was introduced. For example, in Figure V.12, we see a pair of

kinks just prior to and just after the introduction of a sinusoidal modulation of

natural frequency. When the modulation is introduced, a kink/antikink pair arises

at element 90 and leftward (element 90 is a frequency maximum). Shortly after this,

the leftmost kink of the created pair undergoes an annihilation event with the

original kink, leaving behind a kink of similar type located where the original kink

would eventually have moved in any case -- at the frequency maximum. Whether

this is in effect the mechanism for all kink motion remains to be seen.

Another way one might attempt to explain the difference between negative

energy kinks, which move, and positive energy kinks and domain walls, which don't,

is to assert that very sharp solitons are pinned, whereas broad solitons are free to

move. The ambiguity arises from the unfortunate reality that only a limited number

of cases have been tried so far, and for all of the domain walls and positive energy

kink cases, the structures are very sharp. It may be that, when a broad domain wall

is obtained (if they exist), it will move exactly as the negative energy kinks do.
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Finally, a quick look at breathers revealed that they do not seem to move at

all, or even to be affected by the variations, except in this peak amplitude. This may

again be due to sharpness effects; certainly the envelope of a breather is a rapidly

changing function. This result is striking, for breather motion has been observed

experimentally in water trough experiments (Wu, eLaL [1984]).

The best that can be said after this very preliminary look at the behavior of

nonlinear lattices with nonuniformities is that the behavior promises to be as rich

and varied as the uniform lattice, with many new phenomena undoubtedly awaiting

later researchers. It would be very interesting tc study the effects of nonuniformities

in two dimensional lattices, but that's another entire area of research....

C. THE TODA LATCE.

In some ways, the most important contribution this thesis makes to the study

of dynamical systems is the introduction of a highly interactive and readily adaptable

modeling tool for oscillating systems. The modeling should be limited to oscillating

systems, since the errors incurred in using a simple Euler's method derivative may

accumulate in other types of physical models (Appendix A). The program offers the

investigator quick access to an accurate model of his system of interest which allows

him to view system dynamics in the time domain, frequency domain, and phase

domain. Additionally, a full suite of file handling, -outines is provided so the

investigator can save states of his system, or he can sa. sequences of time sampled

data or spectral data in files while observing system behavior.
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In order to demonstrate the utility and flexibility of the program, a model o'

the well known Toda lattice (Toda [1971]) was developed. It required approximately

fifteenminue to completely alter the program, converting it from a model of one

physical system to another! At the conclusion of that time, I was taking data exactly

equivalent to the types of data used throughout this thesis. The Toda lattice is a

lattice where nearest neighbors interact according to an exponential interaction

potential

O(x)= a e-b+ax, V.C. 1

b

which yields an equation of motion (Kuusela and Hietarinta [1990])

~v.C.2

Here x. is the usual variable representing departure from equilibrium position of the

nth element.

The free system given by (V.C.2) suffers from the same problem that all free

systems do in numerical work -- it is often difficult to distinguish solitons from

background radiation, which of course remains for all time due to the lack of

damping. Accordingly, we desire to stabilize the structures of interest by considering

damped and driven systems. In the case of the Toda lattice, there are many possible

ways to add damping and drive. Geist and Lauterborn [1988] used a sinusoidal
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driving force acting only on the first element of the lattice, and viscous damping.

Since this is quite distinct from the parametric drives used in the lattice models we

have studied so far, this method was not used. Instead, three different drive schemes

were developed. The first two consisted simply of parametric drive via each of the

two parameters of the system (a and b); the last was more elaborate. In this scheme,

the lattice elements were each placed in an external potential well analogous to that

provided by gravity in our previous lattices; the parametric drive was viz the natural

frequency of the element resulting solely from its interaction with the potential well

(in other words, the same parametric drive was used that was used in the other

models of this thesis).

Mathematically, the first two methods are given by

.f.-(a*2rqeos2cat)(e b- Z'-'--e -b x.."-x) V.C.3

and

" a~- "" '  - .r , ),V.C.4

where
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B-b+2Tjcos2(at. V.C.5

The third method is given by

~X~RI ~e~I +1q(2 cos2ot)x. .  V.C.6

As before, we arbitrarily set the natural frequency to 1 in the program, without any

loss of generality.

All three of these methods were coded up and run on the computer. The first

two have proven to be very difficult to control, with the slightest changes in drive

or dissipation producing large results. It was possible to get some stable states,

however, with one of them shown in Figure V.13. There are two lattices shown in

the figure, because the stable state is, more accurately, a quasiperiodic state where

the two states shown alternate back and forth, with a transient during the alteration

which shows beating between the left and right hand sides of the lattice. This cyclic

behavior is stable, hence the lattice could be termed quasistable. However, it seems

to me that the main utility of the "pure" Toda lattice is its mathematical tractability

(it is exactly integrable and has been studied extensively in the mathematical

literature); it is difficult to imagine a physical system which obeys the equations of

motion.

More physically interesting is the third type of Toda lattice model, which can

be interpreted physically as particles with exponential interaction potential resting
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each in its own external potential well. A physical realization of this is the solid

state (this interpretation is due to Larraza). The exponential interaction potential

is still questionable, but it is at least a feasible model. The third type of model was

also the most practical numerically, in the time I was able to allot to the Toda lattice

study. It should be noted that it may merely be a poor choice of parameters that

resulted in the difficulty in using the first two models, and a more detailed study will

undoubtedly prove useful. The first result obtained with the Toda lattice in an

external potential was a negative energy kink similar to the cutoff kinks in the NLS

lattice, in a travelling upper cutoff mode. That is, the mode, with its kink in train,

moved from right to left continuously, at a fixed rate. This kink, could not be

stabilized as a standing wave for system parameters close to the original parameters

which yielded the results, although there is no reason to conclude that standing kinks

might not exist elsewhere in the parameter space. In fact, for similar reasons we

cannot really conclude that there are not travelling wave solitons in the nonlinear

lattice model that the rest of this thesis addresses; we just haven't observed then yet.

Figure V.14 shows the profile of this travelling wave domain wall at one instant in

time. It maintains this form as it moves to the left.

The results shown in Figures V.13 and V.14 are only the tip of the iceberg, and

are shown more to demonstrate the flexibility of the program and the computational

ease with which a new line of inquiry can be undertaken. For example, it was found

that lattices which were driven in the coupling term were very difficult to control

and exhibited at best very limited stability. In any case, one of the beauties of this

161



C*

ini

E. I

0 C

X!
I I

>q0e)epn 1ldU

126

0 6 6 6cy L
C C5 U

Ele en~lw

Fi.V1. rvlin oan ali Td atiewt etra ptnil

I-.162



work is that the limiting factor in one's progress is one's understanding of the physics

of lattices; there is no reason to lose productivity to the computer, since the

modeling technique is well developed and very easy to use and mosify. It is to be

hoped that a follow on thesis student will conduct a thorough study of all three Toda

lattice models (and perhaps others), in conjunction with an attempt to understand

the theory of Toda lattice solitons. There are some results in this area in the

literature, but very little is known compared to the simpler lattice models.
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VI. CONCLUSIONS AND PROSPECTS FOR FUTURE WORK

It should be quite evident at this point that the behavior of nonlinear lattices

is extremely complex. We have shown that kinks exist in virtually all modes of

lattice vibration, and domain walls appear to exist between all compatible modes (by

compatibility, we mean all modes where the higher amplitude mode has a negative

energy kink and the lower amplitude mode has a positive energy kink). Neither of

these two assertions has been rigorously proven, but the evidence for them is

encouraging. Additionally, breathers in the cutoff modes were found to be very

robust, and the remarkable self-focusing ,henomenon discovered experimentally by

Denardo [1990] was found numerically as well. Breathers in the Toda lattice and

in the two dimensional analog of the basic lattice we discussed were also found with

relative ease, further suggesting that breathers are common phenomena.

What needs much more work, however, is the theory underlying these many

nonlinear structures. The NLS theory for the cutoff modes is satisfactory, but it

covers only the endpoints of the dispersion curve. It is hoped that, underlying this

broad range of interrelated phenomena, there may exist a common equation of

evolution which will prove more useful than the current favorite (the Korteweg-de

Vries Equation), which has limited physical application. If such a general treatment

that includes the NLS as a special case and which treats all intermediate modes can

be found, it would find broad application in the physical sciences, since the
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underlying equations of motion of the systems considered here are frequently

encountered. Examples include such solid state topics as ferromagnetism,

superconductivity, and nonlinear optics, as well as topics in plasma physics,

cosmology, and particle physics.

There are many questions raised during the course of this work which can be

profitably addressed by follow on researchers using the model developed here;

resolution of these questions will undoubtedly ease the task of achieving the

theoretical understanding desired. It is still an open question whether domain walls

and kinks are distinct fundamental structures or whether domain walls are always

matched kinks (the latter is my view, but it is by no means unanimously accepted).

In addition, there are several classification problems concerning kinks in

intermediate modes, which may be useful to address as a means to guide the work

of the theoreticians. And it is not yet known whether there exist any breathers in

the intermediate modes. Indeed, the distinction between breathers and kinks, which

was made during the study of cutoff mode solitons when the distinction was clear,

may not be a useful distinction in the intermediate modes. And, it is unclear why

the NLS theory works so well far outside the limits of its validity.

This work focused mainly on kinks and domain walls, after the initial

verification of breathers' existence according to the NLS theory. It is left to the next

student (who has already commenced work) to explore breathers in greater detail;

it is hoped that the results of this later work will dovetail with those presented here

to clear up the basic questions.
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We only scratched the surface in this work in the study of two dimensional

lattices and of lattices with different equations of motion (i.e., the Toda lattice). The

work done was done primarily to flex the muscles of the computer program to verify

the ease of adaptation which was one of the design goals of the model. The results

that were obtained, however, were very interesting, and make the pursuit of these

lines of inquiry highly desirable. In particular, the two dimensional case provides an

opportunity to explore the effects of diffraction on solitons. Just from our

preliminary look, this effect appears to be very important, as it accounts for the

unexpected stability of two dimensional breathers (which were thought before to be

impossible to obtain).

In conclusion, we were fortunate in this research effort to be able to make

many interesting discoveries and to bring together conclusively some theoretical and

experimental work. The results obtained have great promise and have opened up

several lines of inquiry. In addition, the value of interactive modeling was shown,

and a simple, fast model was developed which can be adapted in a matter of minutes

to model any vibrating discrete systems. It could, if desired, be used to model wave

motion in continua as well, constituting in that case a simple finite element model.

All that is required is that the researcher correctly enter the equations of motion of

the system to be studied, and to change the I/O section if needed to reflect those

parameters only which are relevant to the new work. This inoel may in the end

prove to be the most important contribution of this research; in any case, it is hoped
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that it will prove useful to many future researchers, to whom it is freely offered for

modification and use.
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APPENDIX A. NUMERICAL METHODS.

Since all of the phenomena studied in this thesis have been oscillatory, it was

possible to use a very simple numerical algorithm, which is a modification of the

classical Euler's method given by

x,(t+h)-x,(t)+hv,(t), (107)

and

v.(t+h)-v,(t) +ha(t). (108)

where h is the time step used. Since the system which I intended to model was one

where the rate of change of x depended at any given time on the values of x of the

adjacent elements, it seemed reasonable to break the calculation of (1) up as follows:

1. Calculate the acceleration felt by each element, based on the positions of

its neighbors.

2. Update the velocities of each element by multiplying the acceleration by

the time step.

3. After all velocities have been updated, calculate the new positions

of the elements, and begin again at 1.
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Mathematically, this process can be represented by a pair of equations:

v.(t+h), vt( .ha,(x _i- ,! + 1 ,V.,0  (109)

and

x.(t+h)-.x(t)+hv.(t+h). (110)

This simple method turned out to work very well indeed. It was found that the

free, linear lattice behaved as expected, and that the nonlinear driven lattice behaved

as hoped. In order to check the quality of the numerics, an energy calculation was

included in the program. The total energy of a free nonlinear lattice with linear

coupling between nearest neighbors is given by

E 1.2Y(X.. 1.2 12 ( 4

- X, +-x - -X,.

It was found in all cases that the total energy of the system oscillated about some

fixed value, with the amount of oscillation being directly proportional to the time

increment used. Thus it was possible to use a large time step to observe qualitative

changes in system behavior more expeditiously, and then to switch to a small step

size (typically 0.005T, where T is the period of the oscillations) when precision is

desired for quantitative comparisons to theory or other results.
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As it turned out, this method and the conclusions about its efficacy had already

been developed (Cromer [1981]), so I regretfully have to identify the method as the

Euler-Cromer method... Also, the method solves a question posed by Goedde,

Lichtenberg, and Lieberman [1990], who pointed out that, if too large a time

discretization is used, parametric instabilities develop in the discrete Sine-Gordon

Equation (of which our model is a third order approximation). They wondered, in

their conclusions, whether it was possible to have stable solitons in a discrete Sine-

Gordon system, or whether the energy of the system would always be

equipartitioned among all of the elements when the time discretization was finite.

The results presented in the body of this thesis, while not a rigorous proof, do

strongly suggest that it is possible to have stable soliton solutions in a discrete

system, provided the time step is reasonably small and a suitable method is used.

Then, the errors are bounded, and one obtains stable results to at least many

thousands of oscillator periods, so that even if the stability is only asymptotic, the

model is practically stable.

Whereas unfortunately the Euler-Cromer method was, if somewhat obscure, not

original, the vehicle in which it was used is, I believe, original and of great potential

utiJiri to future researchers. In a sharp deviation from the type of numerical analysis

which previous computer generations demanded, wherein one started the model with

some set of initial conditions and parameter values and then waited for the outcome,

repeating the process numerous times in order to build up a coherent picture of

physical processes, this model system is highly interactive. This allows the researcher
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to observe system behavior in "real time", and to adjust parameters as desired to

control system behavior or to more fully understand it. Essentially, the model I have

written is analogous to a complete laboratory setup, with data- taking expedited and

unwanted noise virtually eliminated (except numerical "thermal" noise which is small

in most cases). One can adjust the damping, drive amplitude, or drive frequency via

either a fine or coarse adjust "knob", the knob being single keystrokes entered whil

the model is running at full speed. One may also "kick" any chosen elements by any

desired amount, or "pin" an element at zero amplitude, in c :ter to either perturb the

system significantly or to move solitons along the lattice (as was done in the

experimental studies with pendulum lattices and shallow water channels).

The system's behavior can be observed in the time domain either by watching

the lattice on a full screen display of mo-i'ig dots, or on a waterfall display where

trends are more readily apparent (but detail is less clezr). A zoom feature allows

one to rescale with the lattice dynamics, or even to measure numerical "temperature"

by zooming in on nodes in rno des such as the "+ 0-0" mode (see Chapter III), until

the random noise caused by roundoff errors is detected. Several times this was

done, and the results were a numerical noise so low that one had to zoom 2' times

to see it! A user aid is available to monitor the system's stability, which frees the

user to some degree from having to continuously monitor the lattice.

Additionally, the system's dynamics can be viewed real time in the frequency

and phase domains. In the former case, a running spectrum (consisting of

consecutive 2048 point Fast Fourier Transforms adapted from Press, Teukolsky et.
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al. [1988]) of a single element is displayed on the screen, along with all system

parameters. In the latter, a phase portrait of up to five elements at a time is

displayed, with Poincare section optional. In order to eliminate the drive frequency

and thus clean up the display to make interpretation more straightforward, a rotating

set of axes was used, with the coordinate and momentum axes rotating synchronous

with the drive frequency. In such a display, a simple harmonic oscillator appears as

a small ellipse (which vanishes as time increment approaches zero).

The net result of the interactive features the model provides is that one is able

to develop intuition about system behavior as various parameters are ,varied, and one

can experiment with various types of perturbations to the system (including, as well

as those just described, varying parameters randomly, via a gradient, or sinusoidally

(Chapter IV), or just imposing a sudden ramp in amplitude of 5% to test stability of

a given configuration). Such interaction leads one to find structures which might

otherwise escape notice, since they often cannot be obtained simply by choosing a

set of initial conditions and letting the system go. Additionally, having the variety

of representations available at all times and in real time gives great diagnostic

capability to the experienced researcher.

Finally, the program was designed for maximum adaptability to the study of

other problems concerning harmonic systems. In Appendix B, a detailed manual

d,ccribes not only how to use the program, but how to alter it to model other

systems. As discussed in Chapter IV, a working model of the Toda lattice was
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available in fifteen minutes, with the complete range of interactive tools available

for the study of that very challenging dynamic system.
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APPENDIX B. PROGRAM MANUAL.

A. INTRODUCTION AND GETTING STARTED.

The program LATTICE.C is intended to be an adaptable modelling system for

oscillating physical systems. The numerical method used, the Euler-Cromer method,

is described in Appendix A, and should be understood by the researcher. The

purpose of this appendix is to provide a readable manual which describes how to use

and _odif. the program in order to study physical systems using the IBM PC

(preferably 486 based, for speed). The program requires a VGA controller, and is

intended to work in conjunction with screen-dump-to-printer programs such as

EGALASER.COM, which is commercially available. The first part of this manual

describes the use of the program, whereas the second is addressed to those who wish

to make alterations to it in order to modify the model being studied. Changes simply

to improve utility or to add functions are not addressed, although there are certainly

many such changes which might be desirable.

To start the program, simply type LATTICE at the DOS prompt. If you intend

to use a data file for initial conditions, have its name, including extension, ready

when you start the program. The program prompts the user for all information

needed to start the program; interactive commands used once the program is started

are not prompted. However, as discussed in the next section, the user may be

prompted for additional information from time to time. If you desire to run the
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program in conjunction with a screen dump program which is TSR (terminate and

stay resident - it remains in your system's RAM after you start it), you should start

the TSR program before starting the model, since you cannot do it from within the

model.

B. USING THE PROGRAM.

After you start the program, you will be asked whether you wish to use a data

file for initial conditions. This is preferable, since otherwise you have little freedom

concerning initial conditions (unless you modify the program yourself). If you do

want to use a data file, type "y" or "Y" and <ENTER>. The program then asks

whether you want to use the old format data file or not. The old format, which have

been conventionally given the extension ".LAT", consist of a set of six parameters,

followed by two numbers for each element. The first number for each element is

its amplitude; the second is its velocity (which is usually close to zero). If this is the

type of data file you have, type "y". Otherwise, your file should be formatted with

only five initial parameters, but with each element having four numbers. These

numbers represent, in order, the coupling, natural frequency, amplitude, and velocity

of the element. Typing any character other than "y" at the prompt will result in the

program trying to read this format. Finally, the program asks for the file name. The

maximum size is 30 characters, so be sure the file name, including path if that is

different from the path your program resides at, does not exceed thirty characters!
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If you choose not to use a file for initial conditions, the program will prompt

you for all of the parameters it needs. The program's default initial conditions are

an amplitude modulated cutoff mode. If the sign of the nonlinear coefficient is

negative, corresponding to a hardening lattice, the program sets up an upper cutoff

lattice; otherwise it sets up a lower cutoff lattice. The mode is modulated by one

complete wavelength of amplitude chosen by the user ("modulation amplitude", as

opposed to "mode amplitude", which is the amplitude of the cutoff mode itself).

After either the file data is read or the model parameters have been obtained

form the user, the program asks you to enter the time step. The number you enter

will be the time step, after it is multiplied by one half per cent of the period of the

drive (this requires that you do not enter zero for drive frequency, even if you want

an undriven system, since doing so will give a divide by zero error, and this program

does not include error checking). Typical choices for time step, as entered, will be

from one half to four, depending on whether you are most interested in exact

amplitudes (use small time step) or in getting relatively quick, qualitatively accurate

results (use large time step). Use of time steps greater than four does not cause an

error, but it should be done only after the user is farnihar with the behavior of the

model he is studying. f the model is near any sort of boundary in behavior type, or

if it is near a potential energy maximum, using a large time step may perturb the

system into undesirable or even catastrophic behavior. On the other hand, judicious

use of very large time steps can push the system into stable behaviors which might
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otherwise have been missed -- experience is important when choosing the time step!

1. The Default Graphics Mode.

At this point, the screen will go blank. Type AG to get a graphics display

of the system in real time (AG means <CONTROL> G, and this type of shorthand

will be used from now on). The "G command will always do this, so it is a useful

one to memorize immediately. If the display is going off the screen due to excessive

amplitude, you can "zoom" out by typing "o". This means in effect that you step

back from the system, so that the observed maximum amplitude increases (by a

factor of two, as it happens). Similarly, "i" zooms you back in by a factor of two.

This is useful if the amplitudes get too small to see (your picture is limited by the

pixel resolution of the graphics mode). The graphics display will only show 40

elements on the screen; if the lattice you are using contains more than that, the forty

visible elements are the middle elements. The other elements are still being

calculated and will be included if you save your state to a data file, you simply can't

see them. The maximum iiumber of elements is 150.

As a user aid, a stability checking routine is included in the program. This

routine, which is called by typing "S" from any point in the program, asks the user

to select an element for monitoring and then monitors that element to see if it is

"stable". When choosing an element, remember that, in the C language, the first

element of an array is the zeroth element. If you want to monitor the first element,

tell the computer to monitor element zero. Stability is determined by comparing

successive peaks of the am[ litude of the chosen element. If twenty peaks in a row
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are all within one percent of each other, the system is called stable. This does not

mean it is stable in any scientific or mathematical sense; this function is solely to aid

the user as he sees fit. When this option is chosen, the entire lattice changes color

to red, except the element being monitored (which remains white). After stability

has been verified, the lattice returns to the white color, except the chosen element,

which then becomes red.

The stability checker is one of two routines that uses the amplitude peak

detection routine -- the other is the Waterfall Display, which is described later. The

stability checker must be active if it is desired to save the current model state to a

data file, since the states are saved only when the monitored element reaches an

amplitude peak. If, while the stability checker is active, you type "p", the program

will pause and ask you whether you wish to save the state to a file. If you do, type

"y" or "Y", and then give the file name. It is recommended that a personal file

naming protocol be developed early so that confusion does not occur when the

program suddenly asks for a file name. If you type "p" before the stability checker

is inactive, the pause routine will be executed as soon as the stability checker is next

activated. After dumping data to a file, or declining to do so, the program prompts

for a new time step. The old one is displayed for convenience. If you want to keep

it, you must type it. The program uses whatever number you type as the new time

step. Thus, the pause routine provides the only means for changing the time step

during model operation. The user is cautioned against changing the time step while
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the Fourier Analysis routine is operating (see below), since a change in the time step

then will corrupt the Fourier data and give erroneous spectra.

The drive parameters and the dissipation parameter can be changed while

the program is operating (it does not need to be in Default Graphics Mode to do

this). The letters U,V,D, and E represent coarse and fine increases and decreases

in the applicable parameter. A < SHIFT> operation with one of these letters means

the parameter affected is drive frequency. Thus U means coarse increase in drive

frequency. Similarly, "U means coarse increase in drive amplitude, and u means

coarse increase in dissipation. The commands AZ,Z, and z mean that the indicated

parameter (drive amplitulde, frequency, and dissipation, respectively) gets set directly

to zero. This is very useful if your model starts to blow up -- type ^Z and eliminate

drive, so that system energy will at best remain constant (it will decrease if there is

any damping still present). Finally, s brings all elements immediately to rest at zero

amplitude (another useful, but destructive, way to stop a system from blowing up).

It is possible to interact on an element by element basis with your model

system, using the ^K and AL keys. The first of these "kicks" an element, which

means a step change in amplitude is made. Velocity does not change, however,

which should be kept in mind by the observer. The second "pins" an element at zero

amplitude and velocity. The element stays pinned until AL is typed again and the

same element selected (i.e., ^L is a toggle switch, as are several other commands).

The lattice can be changed on a global scale by introducing

nonuniformities into the parameters representing coupling and natural frequency,
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using the W keystroke. These parameters are stored as arrays, with a separate value

for each element. This is so they may be made to vary from element to element.

There are three types of variation available, and they can be applied successively as

many times as desired (this includes "undoing" a variation by introducing an identical

but opposite polarity variation -- except, of course, for random variations). The first

type is a random, five percent (peak to peak) variation of the parameter (only one

of the two parameters can be varied for each keystroke, although both can be varied

by successive keystrokes). The second type is a linear gradient. This gradient is

positive, with the zeroth element's parameter remaining unchanged, and the last

element's parameter being changed by the full amount of the gradient. This amount

(in percent) is chosen by the user. The third type is a sinusoidal variation, in which

the amplitude of the sinusoidal variation and the (integer) number of wavelengths

of the modulation along the entire length of the lattice are input by the user. These

parameter variations are useful for studying the effects of nonuniformities on the

dynamics of the laitice being studied. Additional types of variations can easily be

added by the user (see modification instructions below).

Another useful function, dumping a single element's behavior to a data file

in the form of a pair of time series representing displacement and velocity, is

available to the user in all modes ("modes" refers to Default Graphics, Phase Plot,

Text, Waterfall, and Spectrum display modes). Type "F to start file dumping. The

program will prompt for the element to be dumped; then the program returns to

normal operation. To stop the dump, type "F again, and give the : ame of the data
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file you want to output to. If you don't type ^F again, the program will prompt you

after the 4096 point buffer is full.

Finally, typing n perturbs the system by kicking each element by up to

10%, depending on its location. This command is useful when the stabil:ty to

perturbation of a state is to be determined. If the state returns to normal after a

few of these perturbations, it is definitely stable!

2. Phase Plot Mode.

Phase plane diagrams, or phase plots, are very useful tools in gaining an

understanding of dynamical systems. Accordingly, this type of display is available

to the user via the P command. This command, which can be used anytime the

model is running, shifts the display to phase plot mode. The program asks whether

Poincare sections are desired. Typically, they are, since they provide a much cleaner

and easier way to interpret display. Type y to get Poincare sections, anything else

to get phase plots with continuous updates (one dot per time step). The program

then asks for up to five elements to display. Entering five will result in the model

resuming and the phase plot beginning to build up. Entering fewer than five results

in nothing happening until the user enters 999 to indicate that no further elements

are desired (this entry is prompted, so you don't have to remember it). When in

phase plot mode, all of the commands which affect the lattice are valid, and their

effects will be seen in the phase plots. It is recommended that you experiment with

this a lot, because it is very interesting and useful, and phase plot information is
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this a lot, because it is very interesting and useful, and phase plot information is
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most useful only after significant experience has been built up looking at them under

various conditions.

3. Text Mode.

The text mode is activated by AT. If this is preceded at any time by "H,

the text mode display will conclude with a display of total system energy, calculated

as described in Appendix A. In this mode, the text mode functions as a mode in

which model operation continues; in any other case, the model operation is

suspended until you leave text mode by using the appropriate command to enter

another mode. The text mode gives the values of all system parameters, and then

waits for you to hit a key. When you do, it displays the amplitude and velocity of

each element. In all honesty, this is not a very refined mode, so it is really useful

only for looking at system parameters and system energy.

4. Spectrum Mode.

By typing AX, the user enters Spectrum Mode. The user is prompted to

enter the number of the element whose spectrum is desired. Then execution returns

to the mode the user was in when he typed AX. However, the amplitude of the

chosen element is now dumped every tenth time increment to a data array of 2048

elements. When the array is full, the Fast Fourier Transform is calculated and

displayed. This display then remains on the screen until it is updated (the model

continues to run, and sequential FFTs are calculated every 20480 time increments

until the user enters a different mode using the appropriate command). The system
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parameters and maximum frequency shown are displayed at the top of the screen,

and a frequency axis is displayed at the bottom so that numerical values of the

spectral components can be estimated. If it is desired for the complex FFT values

to be dumped to a data file for later analysis, type y and then enter the filename

when prompted.

5. Waterfall Mode.

The waterfall mode, entered via the ^W command, is useful for

monitoring trends, particularly after some sort of change has been made. I found

it most useful when I introduced lattice nonuniformities. If I immediately typed "W,

I got a good visual indication of the exact response of the lattice to the step changes

I introduced. This type of use is commended to the user. When in Waterfall Mode,

a waterfall display of 110 iterations is displayed, one iteration at a time. It is best

to enter Waterfall Mode with the stability checker inactive, to avoid multiple

waterfall entries for the same lattice state. If this is done, the lattice is displayed

once during each cycle, at the same point in the cycle, so that useful comparisons can

be made. When the Waterfall Display is full, the system does not continue to

operte. This is so that one can pause to examine the display, dump it to the printer

if desired, and then press ^W again to restart the model and refresh the display.

Operating in this way makes it possible to have a continuous series of waterfall

displays recording system behavior for long periods of time.

The zoom in and out commands (i and o) are operative in this mode (and

the phase plot mode), so the display can be adjusted for maximum effectiveness.
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Also, typing AW while the waterfall display is not full toggles the display off. The

model then continues to run, but no new display will appear until the appropriate

mode command (AG, AT, P, "X, or AW) is entered.

When finished with the program, type ^Q to quit.

C. MODIFYING THE PROGRAM.

The program was designed to be as modular as possible, although there was no

great effort expended to optimize performance in general, as the emphasis was on

research and not programming finesse. This modularity makes it easy to modify the

program to model other physical systems. Other modifications, such as to add

additional features or display modes, will not be addressed here.

To model a physical system, the first requirement is to develop the discrete

equations of motion. Discreteness is required for computational purposes, although

time can be treated as continuous (it is discrete, but the equations do not need to

reflect that, since we calculate the acceleration and velocity at discrete instants in

time, thus implicitly discretizing time for you). These equations should then be

coded up in the C language, and then inserted directly in ascpy of the waterfall

program in place of the equations of motion currently installed. The equation

entered should be of the form
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if-J(coordinates,momenta,t). (112)

As long as this form is used, and as long as the system described by the equations

of motion is oscillatory, at least in steady state, then the numerical methods used

should provide excellent results. The user should verify this in every case by

checking the numerics as described in Appendix A.

Once the equations of motion are modified, you need to initiate any variables

or parameters that appear in the equations of motion that are not already initiated.

For example, when I modified the program to create a Toda Lattice model (see

Chapter IV), I had to add a variable b, representing the exponential coupling

parameter. If these parameters are to be input by the user, then the userinit

function should be modified; also, any references to parameters which are removed

in the new model should be deleted from the I/O statements to minimize confusion.

The parameter changes should also be reflected in the file I/O sequences in

userinit and processpause functions. Also, for completeness, the user should

modify the parameters displayed in display_text, initphasplot, and plot-spectrum

functions. When these changes are made, the model is ready to compile using either

the QUICKC compiler or.. if time optimization is required, the Microsoft C version

6.0 compiler. That is all there is to modelling a new physical system! As I stated

in Chapter IV, this is a real strength of this program; I created a Toda lattice model

in fifteen minutes.
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SUMMARY OF COMMANDS

^Q Quit the Program.

"G Enter Default Graphics Mode.

^17 Enter Text Mode.

^W Enter Waterfall Mode.

P Enter Phase Plot Mode.

^X Enter Spectrum Mode.

p Pause program (file I/O, change time step).

W Introduce nonuniformities into lattice.

AH Monitor total system energy (in text mode only).

^F Toggle time series data dump to file.

i/o Zoom in/out by a factor of two in amplitude.

^L Pin an element.

"K Kick an element.

y Dump spectrum to data file.

n Perturn the system by a ten percent amplitude gradient.

S Toggle stability checker on/off.

s Stop all elements.

O/"I Increase/decrease Poincare strobe frequency.

"U,AV,AD,"E Coarse/fine increase/decrease of drive amplitude.

U,V,D,E Coarse/fine increase/decrease of drive frequency.

u,vd,e Coarse/fine increase/decrease of dissipation.
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"Z,Z,z Zero out the drive amplitude/frequency/dissipation.

^R Reset and restart the program.
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C. PROGRAM CODE

/0 PROGRAM WATERFALL --- GENERALIZED NONLINEAR LATTICE MODEL
VERSION 3.0
WRITTEN BY BRIAN GALVIN
LKSTUPDATE 10 JAN 1991

THIS PROGRAM SIMULATES A GENERAL LATTICE WITH EQUATIONS OF MOTION
THAT CAN BE SUBSTITUTED IN WHERE INDICATED. VARIOUS INTERACTIVE
FEATURES ARE PROVIDED, WHICH ARE EXPLAINED IN THE PROGRAMMER'S
MANUAL. A WATERFALL DISPLAY IS ADDED TO MONITOR SOLITON MOTION
DUE TO MEDIUM NONUNIFORMITY EFFECTS. COUPLING AND NATURAL
FREQUENCY CAN BE MADE NONUNIFORM VIA SHIFT-W. '/

/0*** PREPROCESSOR DIRECTIVES 000 0/

#include "\quickc\inc\BIOS.H"
#include "\quickc\inc\qraph.h"
#include "\quickc\inc\stdlib.h"
#include O\quickc\inc\CONIO.H"
#include "\quickc\inc\MATH.H"
finclude "\quickc\inc\STDIO.H"
#include O\quickc\inc\time.h"

/0 -** MACRO DEFINITIONS *0* 0/

#define SQR(a) ((a)*(a))
#define CUB(a) ((a)*(a)*(a))
#define SWAP(a,b) tempr-(a);(a)-(b);(b)-tenpr /* USED IN FFT ROUTINE 0/
#define DOFOR(i,to) tor(i-0;i<to;i +) /* SIMPLIFIED DO LOOP COMMAND 0/
#define PI 3.14159265359
#define SCREENCORRECTIONFACTOR 1.05
#define eta_increment 0.01 /* These increments are used in 0/
#define betaincrement 0.01 /0 adjusting parameters 0/

#define omega-increment 0.001
#define STABILITYINCREMENT 0.01
#define DISPLAY-INCREMENT DINC
#define PHASEINCREMENT PINC
#define MIDDLEELEMENT (nopendulums/2)
#define text-flag flags(O) /* flags have names in body of program, 0/
#define graphics-flag flags(l) /* but they all form a single array. 0/

#define filedump.flag flags[2]
#define stability_flag flags(3)
define peak.flag flags[41
#define stable_flag flags(5)
#define phase_flag flags[6)
idefine pause_flag flags[7)
#define pause-flag2 flags(8)
#define stop-flag flags(9)
#define spectrum-flag flags[o10
#define dumpspectrum-flag flags[11)
fdefin. energy-flag flags(12)
#define waterfall_flag flags[13]
#define wait_flag flags[141

/* ** DYNAMICAL VARIABLE DECLARATION. THESE ARE GLOBAL VARIABLES 000 0/

double coordinate[150),momentum[150],old-coordinate[250],oldmomentum[150];

double accelerationqamma[150],meangamma,beta,omegaO(1501,eanomegao,
eta,omega,alpha,model_time.timeint,
maxamp,mode-amp,timeseries_disp(SOOO],phase-elements(5],
peakrecord(20],pinnedeleents[150].DINC,PINC,period,
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spectrum[4098] .teup2( 4096) ,energy,gradient,wat.inc;
int. no...enduluus,flags[15] ,counterl ,phase-counter,phase-int, first..element,

chosen....lement,tabilityelement,disp-color,colors[ 53,counter2,
upectrum-element, apectrum...counter.samplecounter,energy-counter,
waterfall..counter *colorcounter;

FILE *fp;
int c'i~j~k,1.m~n,xx;
double modulation;
char ans[5];
...clearcreen(GCLEARSCREEN);
user-..init(I; /' STARTS PROGRAM WITH USER INPUT '
....etvidomode C JtES4 COLOR);
...setcolor( 1):

wat.i nc-i;
disp-.color-i;

/* INITIALIZE COUNTERS HERE *

counter2-0;
energy-.counter-o;
color..counter-0;

/*** BODY OF PROGRAM STARTS HERE */

while( utop..jlag-0)
energy-o;
if(pause-.flag2--l) / * A peak has been detected, so the *

paus...!lag2-0; /* pause routine is called/
pause-f.!lag-0;
processpause(o;
/* if(pause... )

if(kbhitol-o) I/* CHECK FOR USER INPUT DURING MODEL RUN '
c-getcho:
if~c-l?) I /*'Q Q uit program *

stop..!lng-i;

else if(c-=ll2) I / p :Pause program/dump state '
pause..!laq=l;

else if(c-=20) I /' -T :Text Mode '
...clearscreen(GCLEARSCREEII):
text-f.!lag-l;
graphics-f.!lag-a;
waterfall! lag-0;
wait-f.!lag-a;
spectrum-f!lag-a;
display..text():

else if(c--7) (/* -G Graphics Mode '
...clearcreen(_GCLEARSCRE:::.):
...setvideonode (...RES4COLOR);
...setcolor( I);
phase.!lag-0;
wait..!lag-0;
spectrum.!lag-a:

text-f.!lag-a;
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graphics.f lag-i;

else if(c-5) (/* -H Monitor energy in text mode *
if(*nergy-flag-o) energy-.f lag-i;
else energy-,f lag-a;

*~THE FOLLOWING CASE IS FOR CHANGING THE UNIFORMITY OF THE
LATTICE. COUPLING OR NATURAL FREQUENCY CAN BE VARIED.
THE THREE TYPES OF VARIATION ARE:
1. RANDOM VARIATION OF FIVE PER CENT
2. LINEAR GRADIENT OF ANY AMOUNT
3. SINUSOIDAL GRADIENT OF ANY AMOUNT, WITH AN

ARBITRARY NUMBER OF FULL WAVELENGTHS OVER
THE LENGTH OF THE LATTICE *** *

else if(c-87) I ' W :Kick in parameter variations *
-setvideouode (..DEFAULTMODE);
srand( (unsigned)time(NULL));
printf("\nEnter I if you wish to vary coupling: )
scanf("%d",&J);
if(j--l)
printf("\nEnter I (random), 2 (gradient), or 3(sine) desired: )
scanf("%d".&k);
if(k--2)I
printt("\nEnter gradient (percentage over entire lattice): )
scanf("Wl",4qradient);
DOFOR( i,no..pendulums) (

- ~~gamma~ i -gamna i J+mean...gama*i*gradient/( lOO'no..pendulums);
I/* DOFOR */
/* if(j--2) *

else if(k--3)
printf("\nEnter modulation amplitude (percentnqe): )

printf("\nEnter inteqer number of w~avelengths to use: )
scant ("Ad".&l);
DOFOR( i,no~pendulums)

gammaji J-qamma(iJ+mean-gamnna*qradient/1OO*(-cos(2*1*PI*i/
no...pendulums));

else DOFOR(i,nopendulums) I
j-rando:)
gamma(i]-mean-.gamma'( .954.1'j/RANDHAX);

else
printf("\nvarying omegao .. \n
printf("\nEnter I (random), 2 (gradient), or 3(sine) desired: )
scanf("%d",&k);
if(k--2) I
printf("\nEnter gradient (percentage over entire lattice): 0);
scanf("tlf".&qradient):
DOFOR( i,no~pendulums) I

omegao[ i -couegao[ i jmean...omegao~igradient/( loo'no..pendulums);

else if(k--3)
printf("\nEnter modulation amplitude (percentage): )
scanf(C"%lf" ,&gradient);
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printf("\nEnter integer number of wavelengths to use:")
scan ( "%d" , £);
DOFOR( i,no-.pendulums)

cuegati J-omegaOf i]+aean...omegaO*gradient/loO* (-cos( 2*l*PI*i/no..penduluns));

else
DOFOR( i,no..pendulums)I

j-rando;
printf("Random number is: %d RAND-MAX is %d\n",J,RAND_.MAX);
aaegaOliJ-meanomeqao*( .95+.l*J/RANDHAX);

else if(c--23) ( /* ~W :Waterfall Display Mode *
if(waterfall-flag-=O)

phase..!lag-a;
graphics..!lag-a;
text-flag-a;
spectrum~f lag-a;
waterfall-flag-i;

else
if(wait~flag-=1) I

wait-flag-a;
init-waterfall();

else waterfall-flag-o:

else if(c'--8O) I /* P :Phase Plot Mode 0

if (phase..!lag--a) init...phasploto;
else

phase~j lag-a;
spectrum.! lag-a:
graphics-flag-l:
waterfall-flag-a;
wait f lag-a;
...setvideomode_MRES4COLOR);
...clearscreen(_GCLEARSCREEI4):

I/* else '

else if(c-6) I /' -F .Time series to file '
if(file..dump..tlag--O) start_file_dump();
elseI

stop~file..dumpo;
f ile.dumpj lag-a:

else if(c--24) I /* ~X :Calculate spectrum *
spectrum-.f lag-i;
_setvideomode (DEFAULT400E):
_clearscreen(_GCLEARSCREEN):
printf("\nEnter number of element to be analyzed: )
scan ( "%d" ,&spectrum.elenent):

,setvideomodeLMRES4COLOR):
_.clearscreen I ..GCLEARSCREEN);
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else if(c==21) C /* U. Increase drive (coarse) *
eta-eta+eta-increment;
stability-restart():

else if(c-4) (/* AD :Decrease drive (coarse) *
eta-eta-eta-increment;
stability..restart();

else if(c-22) (* A'V :Increase drive (fine) *
eta-eta+eta-.increment/l0;
stability-restartoj;

else if(c-5) I/* -E :Decrease drive (fine) *
eta-eta-eta..increment/l0;

else if(c--26) I /* AS :Turn of f drive *
eta-0;
stability-restart();

else if(c--85) I /* U :Increase frequency (coarse)*/
omega-omega+omega-increment;

else if(c-68) ( /* D :Decrease frequency (coarse)*/
tilhe-.int-time..int* 200/period;
omega-omega-omega-increment;
period-2*PI/omeqa;
time-int-time.int*period/200;
stability-restart():

else if(c-=86) I /* V Increase frequency (fine)*/
time-int-time~inte 200/period;
omega-omeqa+omega increment/i 0;
period-2* PI/omega;
time-int-time..int*period/2O0;
stability..restartll;

else if(c--69) ( I E Decrease frequency (fine)*/
time-int-timeint*200/period;
omega-omega-omega-increment;
periodm2I'I /omeqa;
time-int-timejint'period/200;

else if(c--90) /*I S Set frequency to zero *
omega-0;
stability..restart(I;

else if(c--117) ( /* u increase damping (coarse)*/
beta-beta+beta-increment;
*tability..restart();

else if(c=-100) I /* d Decr
beta-beta-beta-increment;
stability-.restart(I;

else iflc--1lS) * I'v Increase damping (fine)*/
beta-beta+beta-increment/ia;
stability-restartoyj
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else if(c--12l) ( /* y Dump spectrum *
if(spectrumflag--l) dump..spectrum-flag-1;

else if(c--l01) ( /* e : Decrease damping (fine)*/
beta-beta-betaincenent;
stability-restartoj;

alse if(c--122) ( /* z: Turn of f damping *
beta--O;
stability..restarto;

else if(c-12) ( /* -L :Pin elements '
pin.elementso;
stability-restarto:

else if(c-'mll) /* -K :Kick elements *
kick-eleinentso;

else if(c-1O5) j /* i: Zoom in '
DINC-DINC/2;
PINC-PINC*2;
wat..incftwat..inc*2;

else if(c-1lll) I /* o Zoom out ~
DINC-DINC*2;
PINC=PINC/2;
wat...incwatinc/2;

else if(c--lilo) I /' n Perturb system *
DQFOR( i,nopendulums)I

modulation-. l'i/no..pendulums;
coordinatel i Jcoordinate[ i *( 1 .O+modulation);

else if(c--15) /* I' 0 :Decrease strobe freq '
phase-int-phase int-l;

else if(c--9) I /* .1 :Increase strobe freq 0
phase..int-phase..int+l;

elSe if(c--18! /* I'R :Restart program *
-setvi deomode (DFAULTHODE):
-clearscreen(..GCLEARSCREEN);
user_inito:
stability restart():
if(phase-flag-wO) _setvideomode(_MRES4COLOR);
else _setvideomode(-VRESl6COLOR);

else if(cw-1l5) I /* s Stop everything as is *
DOFOR(i ,no..pendulums)

coordinate i ]-O;
romentumti 10;

/* DOFOR */
stability-restart();

eleo if(c-w83) I /* S Monitor stability 0
monitor..stability( ;

1* if(kbhit...) /
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spectrum-counter++;
sampie..counter-O;

else
compute..spetrum(); /* COMPUTE SPECTRUM IF SPECTRUM DATA FULL *
.ciearscreen ( .GCLEARSCREEN);
..setvideomodeL-VRESi6COLOR):
piot-.spectrumo;
phase.f lag-0;
text..fag-O;
graphics.f lag-0;
DOFOR(J,4096) spectrumfj]-O;
spectrum counter-O;
sampl" counter-O;
/* else */

/* if ((spec...

/* CHECK FOR PEAKS AND MONITOR STABILITY/SET PAUSE FLAG/INITIATE
WATERFAL DISPLAY AS REQUESTED BY THE USER '*/

((i-(no..pendulums-l))&&(lwaterfali flag--i))) I
if( (coordinateti]>o)&&(coordinate~i)<old-coordinateli1)

&&(peak..flag-=O))
peak..flag-i;
if(pause.f lag--i) pause..flag2=1;
DOFOR(k,19) peak..record~k-peak_recordlk+i];
peak-recordt 19J-coordinatel i ;
if(stability..lag--l) stabilitychecko;
if(waterfal.f lag--i) disp~.yaterfaliFJ:

else if(coordinate~i]<O) peak..!lag-a;

) I DOFOR *

model-.time-mode..time-time-.int; /* I?1CREiIEI1T TIME *

/* CHOOSE DISPLAY MODE ANDl EXECUTE IT */

if(graphics.f lag-i, display..graphicso;

if((text..fla--l)&&(energyjflaq= 1)) (
printf("\n Total Energy at time *if is tlf".model-time,energy):
energy-counter++;
if(energy..counter--20)

printf("\n\nstrike any key to continue... 1);
wftile(kbhit( --O);
energy..counter-O;

£f(phase-.flag!-O) I
phaspiot();
phase_counter++; /* Used for Poincare sections *

/* if(wait..flag *
/* while(stop.flag... '

**LEAVE MAIN BODY OF PROGRAM HERE '
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*0EQUATIONS OF MOTION. THE FOLLOWING LOOP CALCULATES THE
ACCELERATION OF EACH ELEMENT AS THE FIRST STEP OF THE
EULER-CROMER METHOD. THn EQUATIONS CAN BE CHANGED TO
MODEL DIFFERENT PHYSICAL SYSTEMS WITH NO OTHER CHANGE
NEEDED (ALTHOUGH IN ALL LIKELIHODD THE USERINIT AND
FILE SAVE ROUTINES SHOULD BE ALTERED IF THE PARAMETERS
OF INTEREST HAVE CHANGED. ~0

if(waitflag-O)
DOFOR(i,no..pendulums)
if (i-0) (

acceleration-gamma (i J . (coordinate (141]+coordinate (no..pendulums-l I
-2*coordinate( ii)-beta*momentunm 1]
-(SQR(omegao[ 1) )2*eta*cos( 2*omega*modeltimne) lcoordinate! ii
+alpha*CUB(coordinate[ i]);

else it(i--(no.pendulums-1))
acceleration-gamma( 1 *(coordinate[ i-i )+coordinate(O)

-2*coordinatefi1))-beta'momentumf 1]
-(SQR(omegaOli])+2*eta*cos(2*omega*modeltime) )*coordinate(iI
+alpha*CUB(coordinate( il):

else
acceleration-gamma[ i J'(coordinate[i141)4coordinate( i-i)

.-2*coordinatet i J)-beta*uiomentun( i]
- (SQR( omegao [ ]) +2*eta'cos ( 2*megaonodel.time) ) coordinate (i)
+alpha*CUB(coordinate(i JI:

old-jnomentum( i 1momentum(i1 j
momentum[ i ]momentum( i)tacceleration'time.int:
/* DOFOR */

/* UPDATE ACTUAL ELEMENT POSITIONS BASED ON THE NEW VELOCITIES 0

DOFOR( i,no...penduluins)
old-.coordinate( i -coordinatef 1];
iflpinned elementsji]==o) (

coordinate( i -coordinate i J+momentunl i Itimeint;

if((i--chosen element)&(file.dump.flag==1)) ( /* DUMP TO FILE BUF 0
if(counter2++-=30)(

- time-series..disp(counterl++JucoordinateL i];
counter2-0;

if(counterl-=8000) stop..file..dump();
1/0 if((i.. /

if(energy.f lag-=i) I /* CALCULATE ENERGY IF REQUESTED 0
energy=energy+0.5*( SQR(momentuml ))

+ gamma[iJ0SQR((coordinate~i.1J-coordinate(i))
+SQR(coordinate[i]) )-alpha/4'pow(coordinatol 11.4);

/* if(encrqy... ) 0/

it( (spectrum31laq-=1 )&&(spectrum.element--i) /0 UPDATE SPECTRUM DATA 0
&&( (sample..counter++)--5))
if(spectrum..counter<2048)

spectrumt 2*spectrum-counter )-coordinate[ i);
spectrum( Ztspectrumcounter.1 1=0:
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.setvideomode (_DEFAULTMODE);
printf( "PROGRAM COMPLETE AT %lf" ,modeltime):
/* MAIN() */

/**USERINIT ACCEPTS USER INPUT FOR STARTING PARAMETERS AND INITIAL
CONDITIONS, INCLUDING CHOICE OF DATA FILE TO START FROM. ALSO,
VARIOUS INITIALIZATIONS ARE PERFORMED TO GET THE SYSTEM GOING */

user_init()
FILE *fq;
int c,i,j,k,l,m;
char answerl~l],filename(3o]:-
printf("GENERALIZED LATTICE MODEL PROGRAM W/ VARIABLE PARAMETERS\n");
printf( "Version 2.1X486 (MS) \n");
printf("Last updated 10 JAN 1991\n");
printf("Variant notes: Default IC is AN\n"):
printf("Omegao is set equal to one f or all cases!\n");
printf("Rotating phase plane is used.\n");
printf("Real time FFT function is added. ..\n");
printf("Energy monitoring available via ^H in text mode");
printf("^L gives element pinning, NOT ^P... \n\n\n");
printf("\nDo you want to use a file for initial conditior- (Y/N)? )
scanf(Ots",answer);
sample_counter-a;

if((answer[0]=eg)I(answero]==lzl)) I/* FILE INPUT FOR STARTUP '
printf("Do you want to use old format data file?")
scanf( "%s,answer):
printf("\nEnter name of file to be read: )
ucanf("%s",filename);
if((fq-fopen(filename,"r'fl!=UULL) I

mean...amma=O;
fscanf( fq,"%d\n" ,&no-.pendulunis);
fscanf(fq,"%lf\n",&alpha);
fscanf(fq,"%lf\n",&beta):
if((answer[o]==89)I I(answerEQJ'-=121))

fscanf (fq ,"%lf\n",&neangamma);
DOFOR( i,no...pendulums)

gamma i J-mean..gamma;
omegaO~i]=l:

fscanf(fq, "tlf\n",&eta);
fscanf(fq,"%lf\n",&omega);
DOFOR( i,no..pendulums)

if( (answer(0] !-89)&&(answerlaj !-l2l)) I
fscanf(fq,"tlf %If %f %lf\n",

&omegaO(iJ,&gamma~iJ.&coordinateli],&momentumlij)
mean...gama-meangamma+gamma [i 3;

else fscant(tq,"%lf %lf\n",&coordinateti],&momentumliJ);
pinned elements i 1-0;

ix((answer(O]!.A9)&&(answertOj!=l21))
mean~gamma-meangamma/no-pendulums;

fclose(fq);

else printt("Can't open file requested.");
/* if((ans...
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else ( I USER STARTUP '
printf("\nEnter number of pendulums to use: "1);

scanf(C"%d", &no...pendulums);
printf("\nEnter mode amplitude:")
scant ("%lf', &mode.amp);
printf("\nEnter modulation amplitude:")
scanf("%lfU,&max.amp);
printf("\nEnter nonlinear coefficient alpha (+/- 1 ONLY): U)

*canf("%lf",&alpha);
DOFOR(k,no-.pendulums)

if(alpha<O) coordinate[k)=pow( (-1) ,k)*(mode..amp
+maxamp*sin( 2*PI*k/no..pendulums));

else coordinate~k-mode-amp+max..amp'sin( 2*PI*k/no..pendulums);

momentum[k)-0;pinne&..elements (k )uO:
) 1 DOFOR */..

printf("\nEnter coupling coefficient gamma:")
scant C %]f " *&mean-gamma);
DOFOR( i *no~pendulums) (

gamua( i J-ean..gamma;
omegaO[iJ-l;

printf("\nEnter drive amplitude eta: U)

scanf("%lf",&eta);
printt("\nEnter drive frequency omega:")
scant C"%lf' .&omega):
printf("\nEnter dissipation constant beta: )
scanf("%lf",&beta):
/' else */

printf('\nEnter time constant (multiple of period/ZOO):")
scanf("%lf" ,&time.int);
period-2* PI/omega;
time..Ant-time..int*period/200;
DOFOR(i,15) flags~iJ=O;
DOFOR(i,4096) spectrumlil-0;
text-.flag-l;
mean-omegaO-1 .0:
spectrumcounter-O;
DINC-.02; /* CHA11GE THIS TO CHANGE SCALE OF DISPLAY *
PINC-2; /* CHAN4GE THIS TO CHA11GE SCALE OF PHASE PLOT *

/* USERINIT *

/**GRAPHICS DISPLAY ROUTINE**/

display.graphics()
int c,i,j,k,l,m,n;
if (no-.pendulumscm4 0)

first..element-0;
DOFOR(k,no..pendulums)

n-0O;
if( (atability.element--k)&&(stability..flagz-l)) n-1;
if( (pinned..elements~kJ--)&&(disp..color-=1)) n-2;
if((pinned..elementslkI--)aa(disp.color--2)) n--l;
l-old..coordinate[ k /DISPLAY-INCREMENT;
..setcolor(0):
..setpixel((160-5'MIDDLE..ELEMENT + 5*k), (100+1));
1-coordinate (k )/DXSPLAY_.INCREMENT:
_setcolor(disp..color~n);
..setpixel( (160-5*ItIDDLEELEMENT + 5*k) .(100.l));
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1*DOFOR *
/* IF '

else(
1-( no..pendulums-40 )/2;
first-e lament-i;
DOFOR(k,40)(

m-old~.coordinate l+k ]/DISPLAY_.INCREMENT;
n-0;
if((stability..element-(l+k))&&(stabilityjflaq--l)) n-1;
if( (pinned..eements(k]-i)&&(disp-.coior-"i)) n-2;
if( (pinned-eiements~k]-)&(disp..coior--2)) n--i:
...setcoor(O);
_.setpixei((60 + 5*k),(lOO+m));
i-coordinate l+k] /DI SPLAY..INCREMENT;
....etcolor(disp...color+n);
...setpixei((60 + 5*k),(iOO+m));

) I DOFOR *
) /* ELSE*

/* DISPLAY-GRAPHICS *

/**TEXT DISPLAY ROUTINE */

dispay..text()
char *essage(SO];
int c~j,k,l,m;
_setvideomode ( .DEFAULTMODE):
printf("Time is :%lf",model.time);
printf(" System parameters are: \n");
printf(" Gamma %lf",mean_..amma);
printf(" Eta lUt",eta);
printfCm Omega 1f\n*",oneqa);
printf(" Beta %lf",beta);
printf(" Alpha 1lt\n",aipha);
printf("\nThere are %d elements in the system",no,pendulums);
printf("\n\nPress any key to continue..."):
c-getchar();
while(kbhit( )-0)

printf("Element Position Velocity Element Position Veloci
DOFOR(J,20) (

printf(" %d lUt lf %d %if%
j,coordinate[first-.element+j],momentumlfirst-element~j],
(J+20) .coordinate[first element+l4201.
momentum[ first-element+J+20J);

/*DOFOR -/
printf("\n\nPress ^G for graphics, IQ to quit."):
c-getcharol;
while(kbhito --O);
whiie(kbhit( =iO);

) I display.text */

* /****PAUSE ROUTINE. THIS GIVES USER CHOICE OF SAVING CURRENT STATE
TO A DATA FILE. ADDITIONALLY, THE TIME STEP CAN BE VARIED DURING
A PAUSE. "

proces...pause()
mnt c~i,j,k,l,mode;
FILE *fr;
char filename[3O], message(SOJ:
-ciearscreen ( .GCLEARSCREEN);
.setvideomode(_DEFAULTMODE 3;
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printf("Do you wish to save this state? 41);
if((cwgetcheo)ms121) (

printf("\nEnter name of file to be written: )
scanf("ts",filename);
if((fr-fopen(filenae,"w"))IuNULL)

fprintf(fr,"%d\nn .no..pendulums);
fprintf(tr,3 %lf\n",alpha);
fprintf(fr,W%lf\n",beta);
fprintt(fr,"%lf\n",eta);
fprintf(fr,n%lf\n",omega);
DOFOR( i,stability-element)

fprintf(fr,"%lf %If %lf %lt\n",
omegao~i] ,gamma~iJ ,oldcoordinate~i],momentumfij);

DOFOR( i, (fo...pendulums-stability-element))
fprintt(fr,"%lf %If %If %lf\n",omegao~i+stability-element],
gamma(i4.utability-element) .coordinate( i+stability element],
momentumli+stability-element]);

fclase(fr);
) * ito */

else printf("Failed to open ts\n",filename);
)/* if (M) *I

tile-ifltutimeint*200/period.
printf("\nEnter new time multiple (old multiple is %If): ",time..int);
scant("%lt",&timeint):
time mnt-time iflt*period/200;
it(phase..flag--o) -.setvideom6de(HMRES4COLOR);
else ...setvideomode(VRES16COLOR);
/* pracesspause */

/**** START DUMP OF INDIVIDUAL ELEMENT TIME SERIES TO DATA FILE 1.

start-f.ile-.dumpo I
..clearscreen(_LGCLEARSCREEN);
-.setvideomode (..DEFAULTHQDE);
printf("Enter number of element to be monitored: 11):
scant("%d",&chosen element);
if(chosenelement>(nopendulums.l))

printf("Out of range. No file dump");
else file_dump.f lag-1;
...clarscreen ( ..GCLEARSCREEN);
if (phase..flagwmo)
-setvideomode (_YRES4COLOR);
else
...setvideomode LVRESl6COLOR);
counteriwo:
/' start.filedump C

/*'COMPLETE DUM4P OF INDIVIDUAL ELEMENT TIME SERIES TO DATA FILE */

xtop...ile...dumpo(
char tilename[30]:
mnt c,
FILE *fs:
_.clearecreen (-...CLEARSCREEN);
-..setvideomode (..DEFAULThODE);
printf("\nEnter name of file to be written:")
scanf((%s",ilename):
if((fsmtopen(filname,w))I.NULL)

DOFOR(cuooO) fprintf(fs,"%lf\n",timeseries.disp~c]):
...clearscreen(GCLEARSCRIEK):
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counter 1=0;
if (phase..flag--O)
.setvideomode_MRES4COLOR);
else -.setvideomodeLVRESl6COLOR);

) * if(()) */
/*I stop..!ile.dump *

/**CHECK FOR SYSTEM STABILITY. THIS IS A USER AID ONLY. AND DOES NOT
PERFORM A RIGOROUS STABILITY CHECK. IT SIMPLY CHECKS To SEE IF
ALL OF THE LAST TWENTY PEAK AMPLITUDES OF THE CHOSEN ELEMENTS ARE
WITHIN ONE PERCENT OF EACH OTHER ~~

monitor_stabilityo()
if(stability-.flagwuo)

stability..!lag-i;
disp-.color-2;
..setvideomode (_.DEFAULThODE);
printf("Enter number of element to be monitored: f)

scan! C "d",&stability-element);
stability..restart 0;

else
stability..!lag-0;
disp-.color-l;

if (phase..!lag-0)
-setvideomode (_4RES4COLOR);
else
_.setvideomodeLVRESl6COLOR);

stability.check() I
int i,k:
k-0;
DOFOR(i,19)I

stable..!lag-i;
if((peakrecord(i+lI>(pnkrecordi.(4STARIl'Y-NCF.4.11T)flI

(peak-rccord[i4lj<(poak record~iI'(l - STABIL1TYINCHEMENT ))
stable..!lag-0;
break;

/*I if */
) /* DOFOR *

if(stable..flagm-l)
disp...color-l;

/**PIN ANY INDIVIDUAL ELEMENT AT ZERO AMPLITUDE. */

pin..elementso(
mnt ans~i,check;
..setvidomodeL-DEFAULTMODE):
check-O;
printt("\nEnter number of element to be pinned:")
scanf("%d" ,&ans);
if( (ans<0) I(ans'(no..pendulums-l)))

check-1;

if(check--O)
if(pinned..elements~ans)--O)j
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pinned~.elements(ans ]-l;
coordinatelans]-0;
momentum~ ansj-O;

else pinnedelements (ansi-a;
) /* if */

if Cphase-.f lag-0)
-setvideomode (JIRES4COLOR);
else
...setvideomode (_,VRES6COLOR);

/O*KICK ANY INDIVIDUAL ELEMENT ANY DESIRED AMOUNT IN AMPLITUDE */

kick..elementso (
int ans~check;
double amount;
-setvideomode (DEFAULTHODE);
check-0;
printf("\nEnter number of element to kick: )
scanf("%d",&ans);
if( (ans<0) (ans>(no..pendulums-l)))

check-l;

if(check-0)
printf(-\n Enter amount to kick: ;

scanf("tlf" .&amount);
coordinate(ans J-coordinate~ans )+amount;

) * if */
if (phase..!lag--a)
_setvideoaode (..RES4COLOR):
else
_setvideomode (..RESl6COLOR);

stability.restart()
int i;
disp..color-2;
stable-flag-a;
DOFOR(i,20) peak..record(i]-0;
peak-.record( 151-10;

/'*INITIALIZE THE PHASE PLANE PLOTTING SYSTEM4. THIS ROUTINE ONTAINS THE
USER CHOICES FOR ELEMENTS TO MONITOR AND DRAWS THE AXES OF THE PLOT. ~/

init..phasplao(I
mnt c,i,j,k~l;
char ans[5],xessage[40),txt[3J:
float dummy;

spectrum-flag-a;
..setvidoamod (_DEFAULTMODE);
DOFORCi ,5) phase..elements(ij-0;
printf("\nDo you want Poincare sections? )
if( (c-getch( ))--121) phase..flag-2;
else phase-.!lag-i:
printf("\nwhich elements do you wish to monitor (999 to finish): )

k-0;
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while((i4*1-999)&&(k<'))
scanf("%d",&ii):
phase-elements k++ ]=i+1;
/* whtile *

DOFOR(J,5)
if (phase...lements (1 --10OO)

phase...lements [i 3-0:

...etvideomod. (_VRES 6 COLOR);

...clarcrenLG.CLEARSCREEN);
graphics.f lag-0;

* .settextcolor(7);
colorstOl-2;
colors[l]-3;
colors(2J-9;
colors 3 J-14;
colors[4]-:
DOFOR(i,120) I

_s.etpixel(318,4*i);

DOFOR(i,160) I
_s.etpixel(4*i,238);

DOFOR(i,6) I
.aetpixel (319, 10*SCREEN_CORRECTION-FACTOR+1

+(90/SCREN.CORRECTIOFACTOR)*(i~l)):

DOFOR(i.8) I
...etpixel(80*(i+1) ,239):

...moveto( 480, 450);
DOFOR(i,5)(

if( (phase..elementsE ]) !-0)
c-phaseelements i 1-1;

I' itoa(c,txtl10):

printf("Sd ",c):
.. setcolor(colors(i ]);
DOFOR(J,4) (

DOFOR(k,9)I
_seipixel(550410*i+k,lo+j);

/* DOFOR *
printf(" LAT2X486.C");
printf(*\nGamma: %if Eta: *If Beta: 41f",mean..gamma,eta,beta);

Dprintf("\nOuega: %Uf Alpha: %if Time interval: %If",
onega,alpha,time..int);

dummy-l/(time..int'omega);
A phase-.int-dummy/l;

phase..counter-O:

/**PHASE PLANE PLOTTING ROUTINE O/

phauplot() I
mnt i,j,k,l:
double speed, psto, fsstcoordinat., fast..momentum;
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if(phas...flaq.=1)I
OOFOH4(i,5) I

speed-PlIASE-INCREME4T*momentumiji
-setcolor(coloras il);
position'.PIIASE_INCREMENT*coordinnte(iji:
fast-.coordinate-( positionecos(omega*model~time)

-speed'sin(omega'modeltime )/oiuega)
/(3*SCREEN_CORRECTIONFACTOR);

fast..momentum-( position*sin(omega*odel.time)
+speed*cos~omega*model time)/omega)/4;

.setpixel( (320+320*fast..coordinate),(2404240'fast-momentum));
S/* ifM)I
/* DOFOR *

) /* if */
else it(phase~flag-2)
if (phase...counter-phase..int)

Phase..counter-O;
DOFOR(i,5) (

if( (-phase-...lements( i -l) !--l) I
upoCdPHAsE..INCREMENT'aomentum( j ;
..setcolor(eolors( i]);
position-PHASEINCREMEt4T*coordinate( ii;
fast-.coordinate-( position*cos( omega*model..time)

-speed*sin(omega*model-tjme )/omega);
fast..uomentuu=(position*sin(omega*model-tine)

*speed*cas(omega*modeltime)/oIega)/4;
_eetpixel( (320+320*fst...oordinate) ,(240+240'! ast...moentu));

) I ifM)I
/* DOFOR '

) I if *I
/* else if()o

/* phasplot *

/* FFT ROUFTINE *

comput...spectrum()i /* Uses algorithm from p. 411 of Numerical Recipes in C '
int n,amax,m,j,istep,i,nn,temp:
double wtemp~wr,blpr,wpi,wi,theta,tempr,tempi;
nn-2048;
n-nn<<l;

DOFOR(i,2048)I
nnn( i&1024 )/1024;
nn-nn+( i&512 )/256;
mn-nn+(i&256)/64;
nn-nn+(i&129 )/16:
nn-nn+( i&64 )/4;
nn-nn+(i&32):
nn-nn+( i&16)*4;
nn-nn+( i&S)*16;
nn-nn+(i&4)*64;
nn-nn+(i&2)*256;
nn-nn+( ill )1024;
teup2f2*nnj-spectrum(2'i]:
toup2( 2nn~l ]-spectrum( 2*i+l J;

DOFOR(i,4096) spectrum(iJ-temp2(i];
amax-2;
while(n>nmax)
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istep-2*mmax;
theta-2*PI/mmax:
wtemp-sin(O.5*theta);
wpr--2 . Owtemp'wtemp:
wpi-sin(theta);
yr-i .0;
wi-O.O;
for(,-0;u<(uumax-l):m+-2)

for(i-m;i<-n;i+-istep)
J-i+mmax:
tempr-wr'spectrum[ji -wi'spectrumE j+l 1;
tempi-wr'spectrum( j+l )+wi'spectrum[ ii;
spectrum j )=spectruu! i -tempr:

fspectrum! j+l J-spectrum( i+i J-tempi;
spectrum( i I4teumpr;
spectrumj 1+1)+-tempi;

wr(temp-wrr) *wpr-wi*wpi+wr:
vi-wi*wpr+wtemp*wpi+wi;

smax-istep;

I"SPECTRUM PLOTTING ROUTINE "

plotspectrum()
int i,j;
double freq,magnitude~mag,max:
int c;
FILE *fp;
if Cdumpspectrum-f.lag=-l)

printf "\nDumping spectrum now"):
fp-fopen ("spectrum.out,"w");
for(i-l;i<2048;i++)

else print("Time..int was zero!"):
magnitude-sqrt(spectrumE (2*i) J*spectrum( (2*1))

+spectrumf (2*j+l) ]'spectrum( (2'i+l ) );
fprintf(fp,"%lf *If \n",freq,magnitude);

fclose(fp):
duinp...pectrumI lag-0;

-clearscreen (_.GCLEARSCREEN);
max-0;
for(i-l;i<2049;i++) ( /* this loop calculate%. the max spectral component*/

m~agnitude-sqrt( spectrum! (2' Ci)) )*spectrunj (2* i))]
*spectrumU(2*i)+1)J*spectrum((2*Ci)+l) I):

P if(magnitude>max) max-magnitude;

....etcolor(3):
ItDOPOR(i,640) ....etpixel~i,460);

DOFQR(i,ll) _.setpixel(51'i,461),_.setpixel(5l'i,462);
printf(*Spectrum for element %d LATTICZX.C",spectrun~element);
printf("\nAlpha: %lf Beta: %If Gamma: %If Eta: %If Omega: %If",

alpha, beta,mean..gamma, eta ,omega);
printf("\nMax amp - %If ",max);
freq-512/(2048*time_int):
printf("Hax f req shown: %If Time interval: %lf",freq,timejint):

205



-setcolor( 1):
DOFOR(i,512) I

i-0;
magnitude-sqrt~spectrum[ 2*i ]'spectrumE 2'i

+spectrumtz*i+l1*spectruu(2*i+lJ);
naq-iaqnitude*400/oaX;
while~j++<uag) (

*..setpixelCi ,460-J);
/* while *

/* DOFOR '

/**INITIALIZES WATERFALL DISPLAY MODE. DRAWING GRID */

init..yaterfall()
int c,i~j,k,l,n;
char ans[51;
.sotvideouode (-VRESl 6COLOR);
-setcolor( 1);
DOFQR(i,600) _setpixelC2O+i,20):
DOFOR(i,450) .setpixel(20,i+2O):
DOFOR(i,61) (

if( (i-10)1I iin2O)1I(i--32)1I(i--42)1I(i--52)) _setcolor(2);
DOFOR(J,113) (

.setpixel(2O+lO*i,20+4*j);

..Aetcolor(l);

-setcolorC 2);
DOFOR~i,ll)(

DOFOR(J,l60)
.setpixel(2O+4*J,16+40*(1+I) 1:

waterfal lcounter-O;
colorcounter-2;

/**WATERFALL DISPLAY ROUTINE 1

disp--yaterfall()
int c~i,j,k,l;
if(waterfallcounter++<11O)

if Ccalor...counter++--14)
color-.counter-2;
_setcolor (color.~counter);

elseC
_setcolor Ccolor-caunter);

DOFOR( i,no..penduluuis)C
if~waterfall_counter<55)
....etpixel2+2*i.24.S&waterfall.counter-7*wat..inc*(coordiflatelii));

elseC
_.stpixel34O2*i,248*waterfallcounter-55)-7atic*(coordilateli));

elseC
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